update source code and pipeline

This commit is contained in:
2025-09-04 14:39:02 +00:00
parent 9aabd991c5
commit 878310a551
82 changed files with 24373 additions and 0 deletions

496
filter/dbscan_v2.py Normal file
View File

@@ -0,0 +1,496 @@
#!/usr/bin/env python3
"""
DBSCAN Clustering Filter
Filters clustering results based on specific criteria:
- For each cluster: select 50% of points
- 25% from center region (closest to centroid)
- 25% from border region (furthest from centroid)
- All noise points are selected
- Uses cosine distance metric
"""
import json
import numpy as np
from sklearn.preprocessing import normalize
from sklearn.metrics.pairwise import cosine_distances
import argparse
import os
from pathlib import Path
import random
class DBSCANFilter:
def __init__(self, embeddings_path, clustering_results_path):
"""
Initialize DBSCAN filter
Args:
embeddings_path: Path to embeddings JSON file
clustering_results_path: Path to DBSCAN clustering results JSON
"""
self.embeddings_path = embeddings_path
self.clustering_results_path = clustering_results_path
self.embeddings = None
self.embeddings_normalized = None
self.clustering_results = None
self.filepath_to_embedding = {}
def load_data(self):
"""Load embeddings and clustering results"""
print("Loading embeddings...")
with open(self.embeddings_path, 'r') as f:
embeddings_data = json.load(f)
# Create mapping from filepath to embedding
embeddings_list = []
filepaths = []
for item in embeddings_data:
self.filepath_to_embedding[item['filepath']] = item['embedding']
embeddings_list.append(item['embedding'])
filepaths.append(item['filepath'])
self.embeddings = np.array(embeddings_list, dtype=np.float32)
self.embeddings_normalized = normalize(self.embeddings, norm='l2')
print(f"Loaded {len(embeddings_list)} embeddings")
print("Loading clustering results...")
with open(self.clustering_results_path, 'r') as f:
self.clustering_results = json.load(f)
print(f"Loaded clustering results: {self.clustering_results['n_clusters']} clusters, "
f"{self.clustering_results['n_samples']} samples")
def group_by_clusters(self):
"""Group data points by cluster labels"""
clusters = {}
noise_points = []
for result in self.clustering_results['results']:
cluster_id = result['cluster']
filepath = result['filepath']
if 'is_noise' in result:
is_noise = result['is_noise']
else:
is_noise = False
if is_noise or cluster_id == -1:
noise_points.append({
'filepath': filepath,
'embedding': self.filepath_to_embedding[filepath]
})
else:
if cluster_id not in clusters:
clusters[cluster_id] = []
clusters[cluster_id].append({
'filepath': filepath,
'embedding': self.filepath_to_embedding[filepath]
})
return clusters, noise_points
def calculate_cluster_centroid(self, cluster_points):
"""Calculate centroid of a cluster using normalized embeddings"""
embeddings = np.array([point['embedding'] for point in cluster_points])
embeddings_normalized = normalize(embeddings, norm='l2')
# For cosine distance, centroid is the normalized mean
centroid = np.mean(embeddings_normalized, axis=0)
centroid_normalized = normalize(centroid.reshape(1, -1), norm='l2')[0]
return centroid_normalized
def calculate_cosine_distances_to_centroid(self, cluster_points, centroid):
"""Calculate cosine distances from each point to cluster centroid"""
embeddings = np.array([point['embedding'] for point in cluster_points])
embeddings_normalized = normalize(embeddings, norm='l2')
# Calculate cosine distances to centroid
distances = cosine_distances(embeddings_normalized, centroid.reshape(1, -1)).flatten()
return distances
# v1 0.5 data, 0.5 center 0.5 border
# v2 0.5 data, 0.25 center 0.75 border
# def filter_cluster(self, cluster_points, selection_ratio=0.5):
# v3 0.75 data, 0.25 center 0.75 border
#dbscan 014
# def filter_cluster(self, cluster_points, selection_ratio=0.3):
# """
# Filter points from a cluster
# Args:
# cluster_points: List of points in the cluster
# selection_ratio: Ratio of points to select (default: 0.5 = 50%)
# Returns:
# List of selected points
# """
# if len(cluster_points) == 0:
# return []
# # Calculate how many points to select
# total_points = len(cluster_points)
# num_to_select = max(15, int(total_points * selection_ratio))
# # If we need to select all or almost all points, just return all
# if num_to_select >= total_points:
# return cluster_points
# # Calculate centroid
# centroid = self.calculate_cluster_centroid(cluster_points)
# # Calculate distances to centroid
# distances = self.calculate_cosine_distances_to_centroid(cluster_points, centroid)
# # Create list of (point, distance) pairs
# point_distance_pairs = list(zip(cluster_points, distances))
# # Sort by distance (closest to furthest from centroid)
# point_distance_pairs.sort(key=lambda x: x[1])
# dis = 0.1
# # count_center = sum(1 for pair in point_distance_pairs if pair[1] < dis)
# all_center_points = [pair[0] for pair in point_distance_pairs if pair[1] < dis]
# print(f"Number of center points (distance < {dis}): {len(all_center_points)}")
# # count_border = sum(1 for pair in point_distance_pairs if pair[1] >= dis)
# all_border_points = [pair[0] for pair in point_distance_pairs if pair[1] >= dis]
# print(f"Number of border points (distance >= {dis}): {len(all_border_points)}")
# # Calculate how many points to select from center and border
# n_center = len(all_center_points)
# center_count = max(1, int(n_center * 0.15))
# n_border = len(all_border_points)
# if n_border < 70:
# border_count = n_border
# else:
# border_count = max(0, int(n_border * 0.3)) # remaining from border
# selected_points = []
# random.seed(42)
# # Select center points (closest to centroid)
# # center_points = [pair[0] for pair in point_distance_pairs[:center_count]]
# center_points = random.sample(all_center_points, center_count)
# selected_points.extend(center_points)
# # # Select border points (furthest from centroid)
# if border_count > 0:
# # border_points = [pair[0] for pair in point_distance_pairs[-border_count:]]
# border_points = random.sample(all_border_points, border_count)
# selected_points.extend(border_points)
# print(f"Cluster with {total_points} points -> selected {len(selected_points)} points "
# f"({center_count} center + {border_count} border)")
# return selected_points
# dbscan 015
def filter_cluster(self, cluster_points, selection_ratio=0.3):
"""
Filter points from a cluster
Args:
cluster_points: List of points in the cluster
selection_ratio: Ratio of points to select (default: 0.5 = 50%)
Returns:
List of selected points
"""
if len(cluster_points) == 0:
return []
# Calculate how many points to select
total_points = len(cluster_points)
num_to_select = max(15, int(total_points * selection_ratio))
# If we need to select all or almost all points, just return all
if num_to_select >= total_points:
return cluster_points
# Calculate centroid
centroid = self.calculate_cluster_centroid(cluster_points)
# Calculate distances to centroid
distances = self.calculate_cosine_distances_to_centroid(cluster_points, centroid)
# Create list of (point, distance) pairs
point_distance_pairs = list(zip(cluster_points, distances))
# Sort by distance (closest to furthest from centroid)
point_distance_pairs.sort(key=lambda x: x[1])
dis = 0.1
# count_center = sum(1 for pair in point_distance_pairs if pair[1] < dis)
all_center_points = [pair[0] for pair in point_distance_pairs if pair[1] < dis]
print(f"Number of center points (distance < {dis}): {len(all_center_points)}")
# count_border = sum(1 for pair in point_distance_pairs if pair[1] >= dis)
all_border_points = [pair[0] for pair in point_distance_pairs if pair[1] >= dis]
print(f"Number of border points (distance >= {dis}): {len(all_border_points)}")
# Calculate how many points to select from center and border
n_center = len(all_center_points)
center_count = max(1, int(n_center * 0.15))
n_border = len(all_border_points)
if n_border < 70:
border_count = n_border
else:
border_count = max(0, int(n_border * 0.3)) # remaining from border
selected_points = []
random.seed(42)
# Select center points (closest to centroid)
# center_points = [pair[0] for pair in point_distance_pairs[:center_count]]
center_points = random.sample(all_center_points, center_count)
selected_points.extend(center_points)
# # Select border points (furthest from centroid)
if border_count > 0:
# border_points = [pair[0] for pair in point_distance_pairs[-border_count:]]
border_points = random.sample(all_border_points, border_count)
selected_points.extend(border_points)
print(f"Cluster with {total_points} points -> selected {len(selected_points)} points "
f"({center_count} center + {border_count} border)")
return selected_points
#gmm
# def filter_cluster(self, cluster_points, selection_ratio=0.3):
# """
# Filter points from a cluster
# Args:
# cluster_points: List of points in the cluster
# selection_ratio: Ratio of points to select (default: 0.5 = 50%)
# Returns:
# List of selected points
# """
# if len(cluster_points) == 0:
# return []
# # Calculate how many points to select
# total_points = len(cluster_points)
# num_to_select = max(15, int(total_points * selection_ratio))
# # If we need to select all or almost all points, just return all
# if num_to_select >= total_points:
# return cluster_points
# # Calculate centroid
# centroid = self.calculate_cluster_centroid(cluster_points)
# # Calculate distances to centroid
# distances = self.calculate_cosine_distances_to_centroid(cluster_points, centroid)
# # Create list of (point, distance) pairs
# point_distance_pairs = list(zip(cluster_points, distances))
# # Sort by distance (closest to furthest from centroid)
# point_distance_pairs.sort(key=lambda x: x[1])
# dis = 0.2
# # count_center = sum(1 for pair in point_distance_pairs if pair[1] < dis)
# all_center_points = [pair[0] for pair in point_distance_pairs if pair[1] < dis]
# print(f"Number of center points (distance < {dis}): {len(all_center_points)}")
# # count_border = sum(1 for pair in point_distance_pairs if pair[1] >= dis)
# all_border_points = [pair[0] for pair in point_distance_pairs if pair[1] >= dis]
# print(f"Number of border points (distance >= {dis}): {len(all_border_points)}")
# # Calculate how many points to select from center and border
# n_center = len(all_center_points)
# center_count = max(1, int(n_center * 0.15))
# n_border = len(all_border_points)
# if n_border < 70:
# border_count = n_border
# else:
# border_count = max(0, int(n_border * 0.3)) # remaining from border
# selected_points = []
# random.seed(42)
# # Select center points (closest to centroid)
# # center_points = [pair[0] for pair in point_distance_pairs[:center_count]]
# center_points = random.sample(all_center_points, center_count)
# selected_points.extend(center_points)
# # # Select border points (furthest from centroid)
# if border_count > 0:
# # border_points = [pair[0] for pair in point_distance_pairs[-border_count:]]
# border_points = random.sample(all_border_points, border_count)
# selected_points.extend(border_points)
# print(f"Cluster with {total_points} points -> selected {len(selected_points)} points "
# f"({center_count} center + {border_count} border)")
# return selected_points
def filter_all_clusters(self):
"""Filter all clusters according to the specified criteria"""
print("\n" + "="*60)
print("FILTERING DBSCAN CLUSTERING RESULTS")
print("="*60)
clusters, noise_points = self.group_by_clusters()
print(f"Found {len(clusters)} clusters and {len(noise_points)} noise points")
filtered_results = []
# Process each cluster
for cluster_id, cluster_points in clusters.items():
print(f"\nProcessing Cluster {cluster_id}:")
filtered_points = self.filter_cluster(cluster_points)
# Add cluster information
for point in filtered_points:
filtered_results.append({
'filepath': point['filepath'],
'cluster': cluster_id,
'is_noise': False,
'selection_type': 'cluster_filtered'
})
# Add all noise points
print(f"\nAdding all {len(noise_points)} noise points...")
for point in noise_points:
filtered_results.append({
'filepath': point['filepath'],
'cluster': -1,
'is_noise': True,
'selection_type': 'noise'
})
return filtered_results
def save_filtered_results(self, filtered_results, output_path=None):
"""Save filtered results to JSON file"""
if output_path is None:
# Generate output filename based on input
base_name = Path(self.clustering_results_path).stem
output_path = f"{base_name}_filtered.json"
# Create summary statistics
cluster_stats = {}
noise_count = 0
for result in filtered_results:
if result['is_noise']:
noise_count += 1
else:
cluster_id = result['cluster']
if cluster_id not in cluster_stats:
cluster_stats[cluster_id] = 0
cluster_stats[cluster_id] += 1
# Prepare output data
output_data = {
"method": "DBSCAN_FILTERED",
"original_n_clusters": self.clustering_results['n_clusters'],
"original_n_samples": self.clustering_results['n_samples'],
"filtered_n_samples": len(filtered_results),
"filtering_criteria": {
"cluster_selection_ratio": 0.5,
"center_points_ratio": 0.5, # 50% of selected points from center
"border_points_ratio": 0.5, # 50% of selected points from border
"noise_points": "all_selected"
},
"cluster_statistics": cluster_stats,
"noise_points": noise_count,
"results": filtered_results
}
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(output_data, f, indent=4, ensure_ascii=False)
print("\n" + "="*60)
print("FILTERING SUMMARY")
print("="*60)
print(f"Original samples: {self.clustering_results['n_samples']}")
print(f"Filtered samples: {len(filtered_results)}")
print(f"Reduction ratio: {len(filtered_results)/self.clustering_results['n_samples']:.2%}")
print("\nCluster breakdown:")
for cluster_id, count in sorted(cluster_stats.items()):
print(f" Cluster {cluster_id}: {count} points")
print(f" Noise points: {noise_count} points")
print(f"\nFiltered results saved to: {output_path}")
return output_path
def create_filepath_list(self, filtered_results, output_txt_path=None):
"""Create a simple text file with filtered filepaths"""
if output_txt_path is None:
base_name = Path(self.clustering_results_path).stem
output_txt_path = f"{base_name}_filtered_filepaths.txt"
filepaths = [result['filepath'] for result in filtered_results]
with open(output_txt_path, 'w', encoding='utf-8') as f:
for filepath in filepaths:
f.write(f"{filepath}\n")
print(f"Filepath list saved to: {output_txt_path}")
return output_txt_path
def main():
parser = argparse.ArgumentParser(description="Filter DBSCAN clustering results")
parser.add_argument("--embeddings_path", required=True,
help="Path to embeddings JSON file")
parser.add_argument("--clustering_results_path", required=True,
help="Path to DBSCAN clustering results JSON file")
parser.add_argument("--output_path",
help="Output path for filtered results (optional)")
parser.add_argument("--create_filepath_list", action="store_true",
help="Also create a simple text file with filtered filepaths")
args = parser.parse_args()
# Validate input files exist
if not os.path.exists(args.embeddings_path):
print(f"Error: Embeddings file not found: {args.embeddings_path}")
return
if not os.path.exists(args.clustering_results_path):
print(f"Error: Clustering results file not found: {args.clustering_results_path}")
return
# Initialize filter
filter_obj = DBSCANFilter(args.embeddings_path, args.clustering_results_path)
# Load data
filter_obj.load_data()
# Filter clusters
filtered_results = filter_obj.filter_all_clusters()
# Save results
filter_obj.save_filtered_results(filtered_results, args.output_path)
# Create filepath list if requested
if args.create_filepath_list:
filter_obj.create_filepath_list(filtered_results)
print("\nFiltering completed successfully!")
if __name__ == "__main__":
main()