327 lines
12 KiB
Python
327 lines
12 KiB
Python
|
#!/usr/bin/env python3
|
||
|
"""
|
||
|
DBSCAN Clustering Filter
|
||
|
|
||
|
Filters clustering results based on specific criteria:
|
||
|
- For each cluster: select 50% of points
|
||
|
- 25% from center region (closest to centroid)
|
||
|
- 25% from border region (furthest from centroid)
|
||
|
- All noise points are selected
|
||
|
- Uses cosine distance metric
|
||
|
"""
|
||
|
|
||
|
import json
|
||
|
import numpy as np
|
||
|
from sklearn.preprocessing import normalize
|
||
|
from sklearn.metrics.pairwise import cosine_distances
|
||
|
import argparse
|
||
|
import os
|
||
|
from pathlib import Path
|
||
|
|
||
|
|
||
|
class DBSCANFilter:
|
||
|
def __init__(self, embeddings_path, clustering_results_path):
|
||
|
"""
|
||
|
Initialize DBSCAN filter
|
||
|
|
||
|
Args:
|
||
|
embeddings_path: Path to embeddings JSON file
|
||
|
clustering_results_path: Path to DBSCAN clustering results JSON
|
||
|
"""
|
||
|
self.embeddings_path = embeddings_path
|
||
|
self.clustering_results_path = clustering_results_path
|
||
|
self.embeddings = None
|
||
|
self.embeddings_normalized = None
|
||
|
self.clustering_results = None
|
||
|
self.filepath_to_embedding = {}
|
||
|
|
||
|
def load_data(self):
|
||
|
"""Load embeddings and clustering results"""
|
||
|
print("Loading embeddings...")
|
||
|
with open(self.embeddings_path, 'r') as f:
|
||
|
embeddings_data = json.load(f)
|
||
|
|
||
|
# Create mapping from filepath to embedding
|
||
|
embeddings_list = []
|
||
|
filepaths = []
|
||
|
for item in embeddings_data:
|
||
|
self.filepath_to_embedding[item['filepath']] = item['embedding']
|
||
|
embeddings_list.append(item['embedding'])
|
||
|
filepaths.append(item['filepath'])
|
||
|
|
||
|
self.embeddings = np.array(embeddings_list, dtype=np.float32)
|
||
|
self.embeddings_normalized = normalize(self.embeddings, norm='l2')
|
||
|
print(f"Loaded {len(embeddings_list)} embeddings")
|
||
|
|
||
|
print("Loading clustering results...")
|
||
|
with open(self.clustering_results_path, 'r') as f:
|
||
|
self.clustering_results = json.load(f)
|
||
|
|
||
|
print(f"Loaded clustering results: {self.clustering_results['n_clusters']} clusters, "
|
||
|
f"{self.clustering_results['n_samples']} samples")
|
||
|
|
||
|
def group_by_clusters(self):
|
||
|
"""Group data points by cluster labels"""
|
||
|
clusters = {}
|
||
|
noise_points = []
|
||
|
|
||
|
for result in self.clustering_results['results']:
|
||
|
cluster_id = result['cluster']
|
||
|
filepath = result['filepath']
|
||
|
if 'is_noise' in result:
|
||
|
is_noise = result['is_noise']
|
||
|
else:
|
||
|
is_noise = False
|
||
|
|
||
|
if is_noise or cluster_id == -1:
|
||
|
noise_points.append({
|
||
|
'filepath': filepath,
|
||
|
'embedding': self.filepath_to_embedding[filepath]
|
||
|
})
|
||
|
else:
|
||
|
if cluster_id not in clusters:
|
||
|
clusters[cluster_id] = []
|
||
|
clusters[cluster_id].append({
|
||
|
'filepath': filepath,
|
||
|
'embedding': self.filepath_to_embedding[filepath]
|
||
|
})
|
||
|
|
||
|
return clusters, noise_points
|
||
|
|
||
|
def calculate_cluster_centroid(self, cluster_points):
|
||
|
"""Calculate centroid of a cluster using normalized embeddings"""
|
||
|
embeddings = np.array([point['embedding'] for point in cluster_points])
|
||
|
embeddings_normalized = normalize(embeddings, norm='l2')
|
||
|
|
||
|
# For cosine distance, centroid is the normalized mean
|
||
|
centroid = np.mean(embeddings_normalized, axis=0)
|
||
|
centroid_normalized = normalize(centroid.reshape(1, -1), norm='l2')[0]
|
||
|
|
||
|
return centroid_normalized
|
||
|
|
||
|
def calculate_cosine_distances_to_centroid(self, cluster_points, centroid):
|
||
|
"""Calculate cosine distances from each point to cluster centroid"""
|
||
|
embeddings = np.array([point['embedding'] for point in cluster_points])
|
||
|
embeddings_normalized = normalize(embeddings, norm='l2')
|
||
|
|
||
|
# Calculate cosine distances to centroid
|
||
|
distances = cosine_distances(embeddings_normalized, centroid.reshape(1, -1)).flatten()
|
||
|
|
||
|
return distances
|
||
|
|
||
|
# v1 0.5 data, 0.5 center 0.5 border
|
||
|
|
||
|
# v2 0.5 data, 0.25 center 0.75 border
|
||
|
# def filter_cluster(self, cluster_points, selection_ratio=0.5):
|
||
|
|
||
|
# v3 0.75 data, 0.25 center 0.75 border
|
||
|
def filter_cluster(self, cluster_points, selection_ratio=0.5):
|
||
|
|
||
|
"""
|
||
|
Filter points from a cluster
|
||
|
|
||
|
Args:
|
||
|
cluster_points: List of points in the cluster
|
||
|
selection_ratio: Ratio of points to select (default: 0.5 = 50%)
|
||
|
|
||
|
Returns:
|
||
|
List of selected points
|
||
|
"""
|
||
|
if len(cluster_points) == 0:
|
||
|
return []
|
||
|
|
||
|
|
||
|
# Calculate how many points to select
|
||
|
total_points = len(cluster_points)
|
||
|
num_to_select = max(15, int(total_points * selection_ratio))
|
||
|
|
||
|
# If we need to select all or almost all points, just return all
|
||
|
if num_to_select >= total_points:
|
||
|
return cluster_points
|
||
|
|
||
|
# Calculate centroid
|
||
|
centroid = self.calculate_cluster_centroid(cluster_points)
|
||
|
|
||
|
# Calculate distances to centroid
|
||
|
distances = self.calculate_cosine_distances_to_centroid(cluster_points, centroid)
|
||
|
|
||
|
# Create list of (point, distance) pairs
|
||
|
point_distance_pairs = list(zip(cluster_points, distances))
|
||
|
|
||
|
# Sort by distance (closest to furthest from centroid)
|
||
|
point_distance_pairs.sort(key=lambda x: x[1])
|
||
|
|
||
|
# Calculate how many points to select from center and border
|
||
|
# 25% from center (closest to centroid)
|
||
|
center_count = max(1, int(num_to_select * 0.25)) # 50% of selected points from center
|
||
|
# 25% from border (furthest from centroid)
|
||
|
border_count = num_to_select - center_count # remaining from border
|
||
|
|
||
|
selected_points = []
|
||
|
|
||
|
# Select center points (closest to centroid)
|
||
|
center_points = [pair[0] for pair in point_distance_pairs[:center_count]]
|
||
|
selected_points.extend(center_points)
|
||
|
|
||
|
# Select border points (furthest from centroid)
|
||
|
if border_count > 0:
|
||
|
border_points = [pair[0] for pair in point_distance_pairs[-border_count:]]
|
||
|
selected_points.extend(border_points)
|
||
|
|
||
|
print(f"Cluster with {total_points} points -> selected {len(selected_points)} points "
|
||
|
f"({center_count} center + {border_count} border)")
|
||
|
|
||
|
return selected_points
|
||
|
|
||
|
def filter_all_clusters(self):
|
||
|
"""Filter all clusters according to the specified criteria"""
|
||
|
print("\n" + "="*60)
|
||
|
print("FILTERING DBSCAN CLUSTERING RESULTS")
|
||
|
print("="*60)
|
||
|
|
||
|
clusters, noise_points = self.group_by_clusters()
|
||
|
|
||
|
print(f"Found {len(clusters)} clusters and {len(noise_points)} noise points")
|
||
|
|
||
|
filtered_results = []
|
||
|
|
||
|
# Process each cluster
|
||
|
for cluster_id, cluster_points in clusters.items():
|
||
|
print(f"\nProcessing Cluster {cluster_id}:")
|
||
|
filtered_points = self.filter_cluster(cluster_points)
|
||
|
|
||
|
# Add cluster information
|
||
|
for point in filtered_points:
|
||
|
filtered_results.append({
|
||
|
'filepath': point['filepath'],
|
||
|
'cluster': cluster_id,
|
||
|
'is_noise': False,
|
||
|
'selection_type': 'cluster_filtered'
|
||
|
})
|
||
|
|
||
|
# Add all noise points
|
||
|
print(f"\nAdding all {len(noise_points)} noise points...")
|
||
|
for point in noise_points:
|
||
|
filtered_results.append({
|
||
|
'filepath': point['filepath'],
|
||
|
'cluster': -1,
|
||
|
'is_noise': True,
|
||
|
'selection_type': 'noise'
|
||
|
})
|
||
|
|
||
|
return filtered_results
|
||
|
|
||
|
def save_filtered_results(self, filtered_results, output_path=None):
|
||
|
"""Save filtered results to JSON file"""
|
||
|
if output_path is None:
|
||
|
# Generate output filename based on input
|
||
|
base_name = Path(self.clustering_results_path).stem
|
||
|
output_path = f"{base_name}_filtered.json"
|
||
|
|
||
|
# Create summary statistics
|
||
|
cluster_stats = {}
|
||
|
noise_count = 0
|
||
|
|
||
|
for result in filtered_results:
|
||
|
if result['is_noise']:
|
||
|
noise_count += 1
|
||
|
else:
|
||
|
cluster_id = result['cluster']
|
||
|
if cluster_id not in cluster_stats:
|
||
|
cluster_stats[cluster_id] = 0
|
||
|
cluster_stats[cluster_id] += 1
|
||
|
|
||
|
# Prepare output data
|
||
|
output_data = {
|
||
|
"method": "DBSCAN_FILTERED",
|
||
|
"original_n_clusters": self.clustering_results['n_clusters'],
|
||
|
"original_n_samples": self.clustering_results['n_samples'],
|
||
|
"filtered_n_samples": len(filtered_results),
|
||
|
"filtering_criteria": {
|
||
|
"cluster_selection_ratio": 0.5,
|
||
|
"center_points_ratio": 0.5, # 50% of selected points from center
|
||
|
"border_points_ratio": 0.5, # 50% of selected points from border
|
||
|
"noise_points": "all_selected"
|
||
|
},
|
||
|
"cluster_statistics": cluster_stats,
|
||
|
"noise_points": noise_count,
|
||
|
"results": filtered_results
|
||
|
}
|
||
|
|
||
|
with open(output_path, 'w', encoding='utf-8') as f:
|
||
|
json.dump(output_data, f, indent=4, ensure_ascii=False)
|
||
|
|
||
|
print("\n" + "="*60)
|
||
|
print("FILTERING SUMMARY")
|
||
|
print("="*60)
|
||
|
print(f"Original samples: {self.clustering_results['n_samples']}")
|
||
|
print(f"Filtered samples: {len(filtered_results)}")
|
||
|
print(f"Reduction ratio: {len(filtered_results)/self.clustering_results['n_samples']:.2%}")
|
||
|
print("\nCluster breakdown:")
|
||
|
for cluster_id, count in sorted(cluster_stats.items()):
|
||
|
print(f" Cluster {cluster_id}: {count} points")
|
||
|
print(f" Noise points: {noise_count} points")
|
||
|
print(f"\nFiltered results saved to: {output_path}")
|
||
|
|
||
|
return output_path
|
||
|
|
||
|
def create_filepath_list(self, filtered_results, output_txt_path=None):
|
||
|
"""Create a simple text file with filtered filepaths"""
|
||
|
if output_txt_path is None:
|
||
|
base_name = Path(self.clustering_results_path).stem
|
||
|
output_txt_path = f"{base_name}_filtered_filepaths.txt"
|
||
|
|
||
|
filepaths = [result['filepath'] for result in filtered_results]
|
||
|
|
||
|
with open(output_txt_path, 'w', encoding='utf-8') as f:
|
||
|
for filepath in filepaths:
|
||
|
f.write(f"{filepath}\n")
|
||
|
|
||
|
print(f"Filepath list saved to: {output_txt_path}")
|
||
|
return output_txt_path
|
||
|
|
||
|
|
||
|
def main():
|
||
|
parser = argparse.ArgumentParser(description="Filter DBSCAN clustering results")
|
||
|
parser.add_argument("--embeddings_path", required=True,
|
||
|
help="Path to embeddings JSON file")
|
||
|
parser.add_argument("--clustering_results_path", required=True,
|
||
|
help="Path to DBSCAN clustering results JSON file")
|
||
|
parser.add_argument("--output_path",
|
||
|
help="Output path for filtered results (optional)")
|
||
|
parser.add_argument("--create_filepath_list", action="store_true",
|
||
|
help="Also create a simple text file with filtered filepaths")
|
||
|
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
# Validate input files exist
|
||
|
if not os.path.exists(args.embeddings_path):
|
||
|
print(f"Error: Embeddings file not found: {args.embeddings_path}")
|
||
|
return
|
||
|
|
||
|
if not os.path.exists(args.clustering_results_path):
|
||
|
print(f"Error: Clustering results file not found: {args.clustering_results_path}")
|
||
|
return
|
||
|
|
||
|
# Initialize filter
|
||
|
filter_obj = DBSCANFilter(args.embeddings_path, args.clustering_results_path)
|
||
|
|
||
|
# Load data
|
||
|
filter_obj.load_data()
|
||
|
|
||
|
# Filter clusters
|
||
|
filtered_results = filter_obj.filter_all_clusters()
|
||
|
|
||
|
# Save results
|
||
|
filter_obj.save_filtered_results(filtered_results, args.output_path)
|
||
|
|
||
|
# Create filepath list if requested
|
||
|
if args.create_filepath_list:
|
||
|
filter_obj.create_filepath_list(filtered_results)
|
||
|
|
||
|
print("\nFiltering completed successfully!")
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main()
|