107 lines
4.2 KiB
Python
107 lines
4.2 KiB
Python
|
|
# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
import json
|
|
import argparse
|
|
import logging
|
|
import os
|
|
from jinja2 import Environment, FileSystemLoader
|
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
from trl import RewardTrainer, RewardConfig
|
|
from datasets import Dataset
|
|
|
|
|
|
def process_dataset(dataset_path, tokenizer, config, template):
|
|
kwargs = {"padding": "max_length", "truncation": True, "max_length": config["training"]["max_length"], "return_tensors": "pt"}
|
|
examples = []
|
|
try:
|
|
with open(dataset_path, 'r') as file:
|
|
examples = json.load(file)
|
|
except FileNotFoundError:
|
|
print(f"Error: The file '{dataset_path}' was not found.")
|
|
except json.JSONDecodeError:
|
|
print(f"Error: The file '{dataset_path}' is not a valid JSON file.")
|
|
except Exception as e:
|
|
print(f"An unexpected error occurred: {e}")
|
|
|
|
print(examples)
|
|
output_dataset = []
|
|
# use chat template
|
|
for i in range(len(examples)):
|
|
try:
|
|
chosen_message = {"content": examples[i]["prompt"], "output": examples[i]["chosen"]}
|
|
prompt_plus_chosen_response = template.render(message=chosen_message, add_generation_prompt=False, add_output=True)
|
|
|
|
rejected_message = {"content": examples[i]["prompt"], "output": examples[i]["rejected"]}
|
|
prompt_plus_rejected_response = template.render(message=rejected_message, add_generation_prompt=False, add_output=True)
|
|
|
|
tokens_chosen = tokenizer.encode_plus(prompt_plus_chosen_response, **kwargs)
|
|
tokens_rejected = tokenizer.encode_plus(prompt_plus_rejected_response, **kwargs)
|
|
sample = {
|
|
"input_ids_chosen": tokens_chosen["input_ids"][0], "attention_mask_chosen": tokens_chosen["attention_mask"][0],
|
|
"input_ids_rejected": tokens_rejected["input_ids"][0], "attention_mask_rejected": tokens_rejected["attention_mask"][0]
|
|
}
|
|
output_dataset.append(sample)
|
|
except:
|
|
logging.warning(f"Error processing sample.")
|
|
dataset = Dataset.from_list(output_dataset)
|
|
return dataset
|
|
|
|
|
|
def train(config):
|
|
dataset_path = config["dataset"]["labeled_path"]
|
|
student_tokenizer = AutoTokenizer.from_pretrained(
|
|
config["models"]["student"],
|
|
trust_remote_code=True
|
|
)
|
|
|
|
full_path = config["dataset"]["template"]
|
|
template_dir = os.path.dirname(full_path)
|
|
template_file = os.path.basename(full_path)
|
|
env = Environment(loader=FileSystemLoader(template_dir))
|
|
template = env.get_template(template_file)
|
|
dataset = process_dataset(dataset_path, student_tokenizer, config, template)
|
|
|
|
student_model = AutoModelForSequenceClassification.from_pretrained(
|
|
config["models"]["student"],
|
|
num_labels=1,
|
|
trust_remote_code=True
|
|
)
|
|
student_model.config.pad_token_id = student_tokenizer.pad_token_id
|
|
|
|
training_arguments = RewardConfig(**config["training"])
|
|
trainer = RewardTrainer(
|
|
model=student_model,
|
|
processing_class=student_tokenizer,
|
|
args=training_arguments,
|
|
train_dataset=dataset
|
|
)
|
|
|
|
trainer.train()
|
|
trainer.save_model(config["training"]["output_dir"])
|
|
student_tokenizer.save_pretrained(config["training"]["output_dir"])
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--config', type=str, required=True, help='path to the json config file')
|
|
args = parser.parse_args()
|
|
config = json.load(open(args.config))
|
|
train(config)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main() |