Files
distillation/easydistill/synthesis/instruct_synthesis.py
2025-05-27 18:55:46 +08:00

293 lines
11 KiB
Python

# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import logging
import os
from jinja2 import Environment, FileSystemLoader
from vllm import LLM, SamplingParams
from tqdm import tqdm
from openai import OpenAI
import random
import re
from utils import read_json_field, write_data_to_json_file, load_tokenizer_and_vllm
def extract_answer(content):
pattern = r'<answer>(.*?)</answer>'
match = re.search(pattern, content, re.DOTALL)
if match:
return match.group(1)
else:
return None
def extract_instruction_response(content):
instruction_pattern = r'<instruction>(.*?)</instruction>'
instruction_match = re.search(instruction_pattern, content, re.DOTALL)
response_pattern = r'<response>(.*?)</response>'
response_match = re.search(response_pattern, content, re.DOTALL)
if instruction_match and response_match:
return instruction_match.group(1), response_match.group(1)
else:
return None, None
def generate_prompt_list(data_list, prompt, num_in_context_samples, num_output_samples):
if num_in_context_samples > len(data_list):
raise ValueError("num_in_context_samples cannot be larger than the length of data_list")
output_list = []
for _ in range(num_output_samples):
selected_samples = random.sample(data_list, num_in_context_samples)
combined_prompts = prompt + "\n" + "".join([sample + "\n" for sample in selected_samples])
output_list.append(combined_prompts)
return output_list
def expand_instruction_api(data_list, config):
client = OpenAI(
api_key = config["inference"]["api_key"],
base_url = config["inference"]["base_url"],
)
models = client.models.list()
model = models.data[0].id
num_output_samples = config["dataset"]["num_output_samples"]
num_in_context_samples = config["dataset"]["num_in_context_samples"]
prompt = config["inference"]["prompt"]
stream = config["inference"]["stream"]
logging.info(model)
prompt_list = generate_prompt_list(data_list, prompt, num_in_context_samples, num_output_samples)
outcomes = []
for sample in tqdm(prompt_list, desc="Calling remote model and generating responses"):
logging.info(sample)
message = [
{"role": "user", "content": sample}
]
completion = client.chat.completions.create(
messages = message,
model = model,
max_completion_tokens = config["inference"]["max_new_tokens"],
stream = stream,
)
if stream:
result = ""
for chunk in completion:
result += chunk.choices[0].delta.content
else:
result = completion.choices[0].message.content
result = extract_answer(result)
if result is not None:
outcomes.append({"instruction": result})
write_data_to_json_file(outcomes, config["dataset"]["output_path"])
def expand_instruction_batch(tokenizer, llm, data_list, config, batch_size=32):
full_path = config["dataset"]["template"]
template_dir = os.path.dirname(full_path)
template_file = os.path.basename(full_path)
env = Environment(loader=FileSystemLoader(template_dir))
template = env.get_template(template_file)
num_output_samples = config["dataset"]["num_output_samples"]
num_in_context_samples = config["dataset"]["num_in_context_samples"]
prompt = config["inference"]["prompt"]
prompt_list = generate_prompt_list(data_list, prompt, num_in_context_samples, num_output_samples)
outcomes = []
batches = [prompt_list[i:i + batch_size] for i in range(0, len(prompt_list), batch_size)]
for batch in tqdm(batches, desc="Generating responses"):
new_batch = []
for sample in batch:
logging.info(sample)
message={"role": "user", "content": sample}
full_text = template.render(
message=message,
add_generation_prompt=True,
add_output=False
)
new_batch.append(full_text)
outputs = llm.generate(
new_batch,
SamplingParams(
n=1,
top_k=1,
temperature=config["inference"]["temperature"],
seed=config["inference"]["seed"],
skip_special_tokens=False,
ignore_eos=False,
max_tokens=config["inference"]["max_new_tokens"]
)
)
responses = [output.outputs[0].text for output in outputs]
for i in range(len(batch)):
result = extract_answer(responses[i])
if result is not None:
outcomes.append({"instruction": result})
write_data_to_json_file(outcomes, config["dataset"]["output_path"])
def refine_instruction_api(data_list, config):
client = OpenAI(
api_key = config["inference"]["api_key"],
base_url = config["inference"]["base_url"],
)
models = client.models.list()
model = models.data[0].id
prompt = config["inference"]["prompt"]
stream = config["inference"]["stream"]
logging.info(model)
outcomes = []
for sample in tqdm(data_list, desc="Calling remote model and generating responses"):
sample = prompt + "\n" + sample
logging.info(sample)
message = [
{"role": "user", "content": sample}
]
completion = client.chat.completions.create(
messages = message,
model = model,
max_completion_tokens = config["inference"]["max_new_tokens"],
stream = stream
)
if stream:
result = ""
for chunk in completion:
result += chunk.choices[0].delta.content
else:
result = completion.choices[0].message.content
result = extract_answer(result)
if result is not None:
outcomes.append({"instruction": result})
write_data_to_json_file(outcomes, config["dataset"]["output_path"])
def refine_instruction_batch(tokenizer, llm, data_list, config, batch_size=32):
full_path = config["dataset"]["template"]
template_dir = os.path.dirname(full_path)
template_file = os.path.basename(full_path)
env = Environment(loader=FileSystemLoader(template_dir))
template = env.get_template(template_file)
prompt = config["inference"]["prompt"]
outcomes = []
batches = [data_list[i:i + batch_size] for i in range(0, len(data_list), batch_size)]
for batch in tqdm(batches, desc="Generating responses"):
new_batch = []
for sample in batch:
sample = prompt + "\n" + sample
logging.info(sample)
message={"role": "user", "content": sample}
full_text = template.render(
message=message,
add_generation_prompt=True,
add_output=False
)
new_batch.append(full_text)
outputs = llm.generate(
new_batch,
SamplingParams(
n=1,
top_k=1,
temperature=config["inference"]["temperature"],
seed=config["inference"]["seed"],
skip_special_tokens=False,
ignore_eos=False,
max_tokens=config["inference"]["max_new_tokens"],
)
)
responses = [output.outputs[0].text for output in outputs]
for i in range(len(batch)):
result = extract_answer(responses[i])
if result is not None:
outcomes.append({"instruction": result})
write_data_to_json_file(outcomes, config["dataset"]["output_path"])
def instruction_response_extraction_api(data_list, config):
client = OpenAI(
api_key = config["inference"]["api_key"],
base_url = config["inference"]["base_url"],
)
models = client.models.list()
model = models.data[0].id
prompt = config["inference"]["prompt"]
stream = config["inference"]["stream"]
logging.info(model)
outcomes = []
for sample in tqdm(data_list, desc="Calling remote model and generating responses"):
sample = prompt + "\n" + sample
logging.info(sample)
message = [
{"role": "user", "content": sample}
]
completion = client.chat.completions.create(
messages = message,
model = model,
max_completion_tokens = config["inference"]["max_new_tokens"],
stream= stream,
)
if stream:
result = ""
for chunk in completion:
result += chunk.choices[0].delta.content
else:
result = completion.choices[0].message.content
new_instruction, new_response = extract_instruction_response(result)
if new_instruction is not None and new_response is not None:
outcomes.append({"instruction": new_instruction, "output": new_response})
write_data_to_json_file(outcomes, config["dataset"]["output_path"])
def instruction_response_extraction_batch(tokenizer, llm, data_list, config, batch_size=32):
full_path = config["dataset"]["template"]
template_dir = os.path.dirname(full_path)
template_file = os.path.basename(full_path)
env = Environment(loader=FileSystemLoader(template_dir))
template = env.get_template(template_file)
prompt = config["inference"]["prompt"]
outcomes = []
batches = [data_list[i:i + batch_size] for i in range(0, len(data_list), batch_size)]
for batch in tqdm(batches, desc="Generating responses"):
new_batch = []
for sample in batch:
logging.info(sample)
sample = prompt + "\n" + sample
message={"role": "user", "content": sample}
full_text = template.render(
message=message,
add_generation_prompt=True,
add_output=False
)
new_batch.append(full_text)
outputs = llm.generate(
new_batch,
SamplingParams(
n=1,
top_k=1,
temperature=config["inference"]["temperature"],
seed=config["inference"]["seed"],
skip_special_tokens=False,
ignore_eos=False,
max_tokens=config["inference"]["max_new_tokens"],
)
)
responses = [output.outputs[0].text for output in outputs]
for i in range(len(batch)):
new_instruction, new_response = extract_instruction_response(responses[i])
if new_instruction is not None and new_response is not None:
outcomes.append({"instruction": new_instruction, "output": new_response})
write_data_to_json_file(outcomes, config["dataset"]["output_path"])