85 lines
3.5 KiB
Python
85 lines
3.5 KiB
Python
|
|
# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
import json
|
|
import torch
|
|
import logging
|
|
from vllm import LLM
|
|
from transformers import AutoTokenizer
|
|
|
|
|
|
def read_json_field(filename, field_name='instruction'):
|
|
try:
|
|
with open(filename, 'r') as file:
|
|
data = json.load(file)
|
|
output_fields = []
|
|
for item in data:
|
|
if field_name in item:
|
|
output_fields.append(item[field_name])
|
|
return output_fields
|
|
except FileNotFoundError:
|
|
logging.error("The file was not found.")
|
|
except json.JSONDecodeError:
|
|
logging.error("There was an error decoding the JSON file.")
|
|
except Exception as e:
|
|
logging.error(f"An error occurred: {e}")
|
|
|
|
|
|
def write_data_to_json_file(data, file_path):
|
|
try:
|
|
with open(file_path, 'w') as file:
|
|
json.dump(data, file, ensure_ascii=False, indent=4)
|
|
logging.info(f"Data successfully written to {file_path}")
|
|
except Exception as e:
|
|
logging.error(f"An error occurred: {e}")
|
|
|
|
|
|
def load_tokenizer_and_vllm(config, eos_token=None):
|
|
teacher_model_path = config["models"]["teacher"]
|
|
logging.info(f"Loading ckpt and tokenizer: {teacher_model_path}")
|
|
tokenizer = AutoTokenizer.from_pretrained(teacher_model_path, trust_remote_code=True)
|
|
tokenizer.padding_side = "left"
|
|
if eos_token:
|
|
eos_token_id = tokenizer.convert_tokens_to_ids(eos_token)
|
|
logging.info(f"eos_token {eos_token} from user input")
|
|
elif hasattr(tokenizer, "eos_token_id") and tokenizer.eos_token_id:
|
|
logging.info(f"Initial eos_token_id {tokenizer.eos_token_id} from tokenizer")
|
|
eos_token_id = tokenizer.eos_token_id
|
|
eos_token = tokenizer.convert_ids_to_tokens(eos_token_id)
|
|
else:
|
|
raise ValueError("No available eos_token or eos_token_id.")
|
|
try:
|
|
tokenizer.eos_token = eos_token
|
|
tokenizer.eos_token_id = eos_token_id
|
|
tokenizer.pad_token = eos_token
|
|
tokenizer.pad_token_id = eos_token_id
|
|
except:
|
|
logging.info(f"[WARNING] Cannot set tokenizer.eos_token")
|
|
logging.info(f"tokenizer's eos_token: {tokenizer.eos_token}, pad_token: {tokenizer.pad_token}")
|
|
logging.info(f"tokenizer's eos_token_id: {tokenizer.eos_token_id}, pad_token_id: {tokenizer.pad_token_id}")
|
|
num_gpus = torch.cuda.device_count()
|
|
llm = LLM(
|
|
model=teacher_model_path,
|
|
tensor_parallel_size=num_gpus,
|
|
enable_chunked_prefill=config["inference"]["enable_chunked_prefill"],
|
|
gpu_memory_utilization=config["inference"]["gpu_memory_utilization"],
|
|
trust_remote_code=config["inference"]["trust_remote_code"],
|
|
dtype=torch.bfloat16,
|
|
enforce_eager=config["inference"]["enforce_eager"],
|
|
max_model_len=config["inference"]["max_model_len"],
|
|
)
|
|
logging.info("vLLM model loaded successfully")
|
|
return tokenizer, llm |