Files
distillation/easydistill/rl/ppo_train.py
2025-05-27 18:55:46 +08:00

122 lines
4.4 KiB
Python

# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import json
import argparse
import logging
import os
import random
from jinja2 import Environment, BaseLoader, FileSystemLoader
from datasets import load_dataset, Dataset
from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer
from trl import PPOConfig, PPOTrainer
def process_dataset(dataset_path, dataset_seed, env, template, tokenizer, train_ratio):
examples = []
try:
with open(dataset_path, 'r') as file:
examples = json.load(file)
except FileNotFoundError:
print(f"Error: The file '{dataset_path}' was not found.")
except json.JSONDecodeError:
print(f"Error: The file '{dataset_path}' is not a valid JSON file.")
except Exception as e:
print(f"An unexpected error occurred: {e}")
output_dataset = []
# use chat template
for i in range(len(examples)):
try:
message = {"content": examples[i]["instruction"]}
rendered = template.render(message=message, add_generation_prompt=True, add_output=False)
tokens = tokenizer.encode(rendered)
sample = {"input_ids": tokens}
output_dataset.append(sample)
except:
logging.warning(f"Error processing sample.")
random.shuffle(output_dataset)
random.seed(dataset_seed)
split_index = int(len(output_dataset) * train_ratio)
train_list = output_dataset[:split_index]
eval_list = output_dataset[split_index:]
return Dataset.from_list(train_list), Dataset.from_list(eval_list)
def train(config):
dataset_path = config["dataset"]["instruction_path"]
dataset_seed = config["dataset"]["seed"]
train_ratio = config["dataset"]["train_ratio"]
full_path = config["dataset"]["template"]
template_dir = os.path.dirname(full_path)
template_file = os.path.basename(full_path)
env = Environment(loader=FileSystemLoader(template_dir))
template = env.get_template(template_file)
tokenizer = AutoTokenizer.from_pretrained(
config["models"]["student"],
trust_remote_code=True
)
train_dataset, eval_dataset = process_dataset(dataset_path, dataset_seed, env, template, tokenizer, train_ratio)
assert train_dataset[0]["input_ids"][-1] != tokenizer.eos_token_id, "The last token should not be an EOS token"
print(train_dataset)
print(eval_dataset)
reward_model_path = config["models"]["reward"]
sft_model_path = config["models"]["student"]
value_model = AutoModelForSequenceClassification.from_pretrained(
reward_model_path, trust_remote_code=True, num_labels=1
)
reward_model = AutoModelForSequenceClassification.from_pretrained(
reward_model_path, trust_remote_code=True, num_labels=1
)
ref_policy = AutoModelForCausalLM.from_pretrained(
sft_model_path, trust_remote_code=True
)
policy = AutoModelForCausalLM.from_pretrained(
sft_model_path, trust_remote_code=True
)
training_arguments = PPOConfig(**config["training"])
trainer = PPOTrainer(
config=training_arguments,
processing_class=tokenizer,
policy=policy,
ref_policy=ref_policy,
reward_model=reward_model,
value_model=value_model,
train_dataset=train_dataset,
eval_dataset=eval_dataset
)
trainer.train()
trainer.save_model(config["training"]["output_dir"])
tokenizer.save_pretrained(config["training"]["output_dir"])
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, required=True, help='path to the json config file')
args = parser.parse_args()
config = json.load(open(args.config))
train(config)
if __name__ == "__main__":
main()