# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import json import argparse import logging import os import re from tqdm import tqdm from openai import OpenAI from collections import Counter logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') predefined_distribution = { 'Math': 0.167, 'Code Generation': 0.083, 'Writing': 0.017, 'Computer Science': 0.017, 'Reasoning': 0.167, 'Complex Format': 0.017, 'Code Debug': 0.083, 'Common-Sense': 0.017, 'Counterfactual': 0.017, 'Multilingual': 0.017, 'Roleplay': 0.017, 'Biology': 0.017, 'Technology': 0.017, 'Ethics': 0.017, 'Sport': 0.017, 'Law': 0.017, 'Medicine': 0.017, 'Literature': 0.017, 'Entertainment': 0.017, 'Art': 0.017, 'Music': 0.017, 'Toxicity': 0.017, 'Economy': 0.017, 'Physics': 0.017, 'History': 0.017, 'Chemistry': 0.017, 'Philosophy': 0.017, 'Health': 0.017, 'Ecology': 0.017, 'Grammar': 0.017, 'Paraphrase': 0.017, 'Others': 0.041 } predefined_prompt = """ You are a data annotation expert. Please classify the task type or domain of #Given Instruction. The task type or domain should be in the list: [’Math’, ’Code Generation’, ’Writing’, ’Computer Science’, ’Reasoning’, ’Complex Format’, ’Code Debug’, ’Common-Sense’, ’Counterfactual’, ’Multilingual’, ’Roleplay’, ’Biology’, ’Technology’, ’Ethics’, ’Sport’, ’Law’, ’Medicine’, ’Literature’, ’Entertainment’, ’Art’, ’Music’, ’Toxicity’, ’Economy’, ’Physics’, ’History’, ’Chemistry’, ’Philosophy’,’Health’,’Ecology’,’Grammar’,’Paraphrase’, ’Others’]. You should place your answer enclosed within tags, such as Math. Do not return anything else. #Given Instruction#: """ def extract_answer(content): pattern = r'(.*?)' match = re.search(pattern, content, re.DOTALL) if match: return match.group(1) else: return None def read_json_fields(filename): try: with open(filename, 'r') as file: data = json.load(file) return data except FileNotFoundError: logging.error("The file was not found.") except json.JSONDecodeError: logging.error("There was an error decoding the JSON file.") except Exception as e: logging.error(f"An error occurred: {e}") def write_data_to_json_file(data, file_path): try: with open(file_path, 'w') as file: json.dump(data, file, ensure_ascii=False, indent=4) logging.info(f"Data successfully written to {file_path}") except Exception as e: logging.error(f"An error occurred: {e}") def classify_instruction(instruction, client, model, config): message = [ {"role": "user", "content": predefined_prompt + "\n" + instruction} ] completion = client.chat.completions.create( messages = message, model = model, max_completion_tokens = config["inference"]["max_new_tokens"] ) result = completion.choices[0].message.content.strip() result = extract_answer(result) if result is None or result not in predefined_distribution.keys(): result = 'Others' return result def generate_teacher_response_api(data_list, config): client = OpenAI( api_key = config["inference"]["api_key"], base_url = config["inference"]["base_url"] ) models = client.models.list() model = models.data[0].id logging.info(model) classified_data = [] for sample in tqdm(data_list, desc="Call remote model and generating responses"): instruction = sample["instruction"] category = classify_instruction(item['instruction'], client, model) new_sample = sample.copy() new_sample['category'] = category classified_data.append(new_sample) # Count occurrences per category category_counts = Counter(item['category'] for item in classified_data) total_samples = len(classified_data) # Resample according to predefined distribution resampled_data = [] for category, target_ratio in predefined_distribution.items(): target_count = int(total_samples * target_ratio) category_samples = [item for item in classified_data if item['category'] == category] if len(category_samples) == 0: logging.warning("No instructions are provided for the category: " + category) continue if len(category_samples) > target_count: # Randomly sample the required number of instructions resampled_category_samples = random.sample(category_samples, target_count) else: # If not enough samples, repeat the existing ones resampled_category_samples = category_samples * (target_count // len(category_samples)) + random.sample( category_samples, target_count % len(category_samples)) resampled_data.extend(resampled_category_samples) write_data_to_json_file(resampled_data, config["dataset"]["output_path"]) def sample_with_teacher_model(config): logging.info('Generating distillation data from the teacher model!') data_list = read_json_fields(config["dataset"]["input_path"]) job_type = config["job_type"] assert job_type == "instruct_sample_api" generate_teacher_response_api(data_list, config) def main(): parser = argparse.ArgumentParser() parser.add_argument('--config', type=str, required=True, help='path to the json config file') args = parser.parse_args() config = json.load(open(args.config)) sample_with_teacher_model(config) if __name__ == "__main__": main()