# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import json import re import logging from openai import OpenAI from collections import Counter import random import argparse predefined_distribution = { 'Math': 0.167, 'Code Generation': 0.083, 'Writing': 0.017, 'Computer Science': 0.017, 'Reasoning': 0.167, 'Complex Format': 0.017, 'Code Debug': 0.083, 'Common-Sense': 0.017, 'Counterfactual': 0.017, 'Multilingual': 0.017, 'Roleplay': 0.017, 'Biology': 0.017, 'Technology': 0.017, 'Ethics': 0.017, 'Sport': 0.017, 'Law': 0.017, 'Medicine': 0.017, 'Literature': 0.017, 'Entertainment': 0.017, 'Art': 0.017, 'Music': 0.017, 'Toxicity': 0.017, 'Economy': 0.017, 'Physics': 0.017, 'History': 0.017, 'Chemistry': 0.017, 'Philosophy': 0.017, 'Health': 0.017, 'Ecology': 0.017, 'Grammar': 0.017, 'Paraphrase': 0.017, 'Others': 0.041 } predefined_prompt = """ You are a data annotation expert. Please classify the task type or domain of #Given Instruction. The task type or domain should be in the list: [’Math’, ’Code Generation’, ’Writing’, ’Computer Science’, ’Reasoning’, ’Complex Format’, ’Code Debug’, ’Common-Sense’, ’Counterfactual’, ’Multilingual’, ’Roleplay’,’Biology’, ’Technology’, ’Ethics’, ’Sport’, ’Law’, ’Medicine’, ’Literature’, ’Entertainment’, ’Art’, ’Music’, ’Toxicity’, ’Economy’, ’Physics’, ’History’, ’Chemistry’, ’Philosophy’,’Health’,’Ecology’,’Grammar’,’Paraphrase’, ’Others’]. You should place your answer enclosed within tags, such as Math. Do not return anything else. #Given Instruction#: """ def extract_answer(content): pattern = r'(.*?)' match = re.search(pattern, content, re.DOTALL) if match: return match.group(1) else: return None def classify_instruction(instruction, client, model): message = [ {"role": "user", "content": predefined_prompt + "\n" + instruction} ] completion = client.chat.completions.create( messages = message, model = model, max_completion_tokens = 1024 ) result = completion.choices[0].message.content.strip() print(result) result = extract_answer(result) if result is None or result not in predefined_distribution.keys(): result = 'Others' print(result) return result def main(args): # Load dataset with open(args.input_file, 'r') as file: data = json.load(file) # Initialize OpenAI client client = OpenAI( api_key=args.api_key, base_url=args.base_url ) models = client.models.list() model = models.data[0].id logging.info(model) # Classify each instruction classified_data = [] count = 0 for item in data: category = classify_instruction(item['instruction'], client, model) classified_data.append({'instruction': item['instruction'], 'category': category}) count += 1 print(count) # Count occurrences per category category_counts = Counter(item['category'] for item in classified_data) total_samples = len(classified_data) # Resample according to predefined distribution resampled_data = [] for category, target_ratio in predefined_distribution.items(): target_count = int(total_samples * target_ratio) category_samples = [item for item in classified_data if item['category'] == category] if len(category_samples) == 0: logging.warning("No instructions are provided for the category: " + category) continue if len(category_samples) > target_count: print(category) print(len(category_samples)) print(target_count) # Randomly sample the required number of instructions resampled_category_samples = random.sample(category_samples, target_count) else: # If not enough samples, repeat the existing ones resampled_category_samples = category_samples * (target_count // len(category_samples)) + random.sample(category_samples, target_count % len(category_samples)) resampled_data.extend(resampled_category_samples) # Save final dataset with open(args.output_file, 'w') as file: json.dump(resampled_data, file, indent=4) print("Resampling complete. Final output saved to '{}'.".format(args.output_file)) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Task and Domain Classification') parser.add_argument('--input-file', type=str, required=True, help='Input JSON file containing instructions.') parser.add_argument('--output-file', type=str, required=True, help='Output JSON file to store resampled instructions.') parser.add_argument('--api-key', type=str, required=True, help='API key.') parser.add_argument('--base-url', type=str, required=True, help='Base URL.') args = parser.parse_args() main(args)