# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import json
import re
import logging
from openai import OpenAI
from collections import Counter
import random
import argparse
predefined_distribution = {
'Math': 0.167,
'Code Generation': 0.083,
'Writing': 0.017,
'Computer Science': 0.017,
'Reasoning': 0.167,
'Complex Format': 0.017,
'Code Debug': 0.083,
'Common-Sense': 0.017,
'Counterfactual': 0.017,
'Multilingual': 0.017,
'Roleplay': 0.017,
'Biology': 0.017,
'Technology': 0.017,
'Ethics': 0.017,
'Sport': 0.017,
'Law': 0.017,
'Medicine': 0.017,
'Literature': 0.017,
'Entertainment': 0.017,
'Art': 0.017,
'Music': 0.017,
'Toxicity': 0.017,
'Economy': 0.017,
'Physics': 0.017,
'History': 0.017,
'Chemistry': 0.017,
'Philosophy': 0.017,
'Health': 0.017,
'Ecology': 0.017,
'Grammar': 0.017,
'Paraphrase': 0.017,
'Others': 0.041
}
predefined_prompt = """
You are a data annotation expert. Please classify the task type or domain of #Given Instruction.
The task type or domain should be in the list: [’Math’, ’Code Generation’, ’Writing’, ’Computer Science’, ’Reasoning’, ’Complex Format’, ’Code Debug’, ’Common-Sense’, ’Counterfactual’, ’Multilingual’, ’Roleplay’,’Biology’, ’Technology’, ’Ethics’, ’Sport’, ’Law’, ’Medicine’, ’Literature’, ’Entertainment’, ’Art’, ’Music’, ’Toxicity’, ’Economy’, ’Physics’, ’History’, ’Chemistry’, ’Philosophy’,’Health’,’Ecology’,’Grammar’,’Paraphrase’, ’Others’]. You should place your answer enclosed within tags, such as Math. Do not return anything else.
#Given Instruction#:
"""
def extract_answer(content):
pattern = r'(.*?)'
match = re.search(pattern, content, re.DOTALL)
if match:
return match.group(1)
else:
return None
def classify_instruction(instruction, client, model):
message = [
{"role": "user", "content": predefined_prompt + "\n" + instruction}
]
completion = client.chat.completions.create(
messages = message,
model = model,
max_completion_tokens = 1024
)
result = completion.choices[0].message.content.strip()
print(result)
result = extract_answer(result)
if result is None or result not in predefined_distribution.keys():
result = 'Others'
print(result)
return result
def main(args):
# Load dataset
with open(args.input_file, 'r') as file:
data = json.load(file)
# Initialize OpenAI client
client = OpenAI(
api_key=args.api_key,
base_url=args.base_url
)
models = client.models.list()
model = models.data[0].id
logging.info(model)
# Classify each instruction
classified_data = []
count = 0
for item in data:
category = classify_instruction(item['instruction'], client, model)
classified_data.append({'instruction': item['instruction'], 'category': category})
count += 1
print(count)
# Count occurrences per category
category_counts = Counter(item['category'] for item in classified_data)
total_samples = len(classified_data)
# Resample according to predefined distribution
resampled_data = []
for category, target_ratio in predefined_distribution.items():
target_count = int(total_samples * target_ratio)
category_samples = [item for item in classified_data if item['category'] == category]
if len(category_samples) == 0:
logging.warning("No instructions are provided for the category: " + category)
continue
if len(category_samples) > target_count:
print(category)
print(len(category_samples))
print(target_count)
# Randomly sample the required number of instructions
resampled_category_samples = random.sample(category_samples, target_count)
else:
# If not enough samples, repeat the existing ones
resampled_category_samples = category_samples * (target_count // len(category_samples)) + random.sample(category_samples, target_count % len(category_samples))
resampled_data.extend(resampled_category_samples)
# Save final dataset
with open(args.output_file, 'w') as file:
json.dump(resampled_data, file, indent=4)
print("Resampling complete. Final output saved to '{}'.".format(args.output_file))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Task and Domain Classification')
parser.add_argument('--input-file', type=str, required=True, help='Input JSON file containing instructions.')
parser.add_argument('--output-file', type=str, required=True, help='Output JSON file to store resampled instructions.')
parser.add_argument('--api-key', type=str, required=True, help='API key.')
parser.add_argument('--base-url', type=str, required=True, help='Base URL.')
args = parser.parse_args()
main(args)