# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import json import argparse import logging import os import torch from transformers import AutoModelForCausalLM, AutoTokenizer from vllm import LLM, SamplingParams from jinja2 import Environment, FileSystemLoader from tqdm import tqdm from openai import OpenAI logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') def read_json_field(filename, field_name='prompt'): try: with open(filename, 'r') as file: data = json.load(file) output_fields = [] for item in data: if field_name in item: output_fields.append(item[field_name]) return output_fields except FileNotFoundError: logging.error("The file was not found.") except json.JSONDecodeError: logging.error("There was an error decoding the JSON file.") except Exception as e: logging.error(f"An error occurred: {e}") def write_data_to_json_file(data, file_path): try: with open(file_path, 'w') as file: json.dump(data, file, ensure_ascii=False, indent=4) logging.info(f"Data successfully written to {file_path}") except Exception as e: logging.error(f"An error occurred: {e}") def load_tokenizer_and_vllm(config, eos_token=None, is_teacher_model=True): if is_teacher_model: model_path = config["models"]["teacher"] else: model_path = config["models"]["student"] logging.info(f"Loading ckpt and tokenizer: {model_path}") tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) tokenizer.padding_side = "left" if eos_token: eos_token_id = tokenizer.convert_tokens_to_ids(eos_token) logging.info(f"eos_token {eos_token} from user input") elif hasattr(tokenizer, "eos_token_id") and tokenizer.eos_token_id: logging.info(f"Initial eos_token_id {tokenizer.eos_token_id} from tokenizer") eos_token_id = tokenizer.eos_token_id eos_token = tokenizer.convert_ids_to_tokens(eos_token_id) else: raise ValueError("No available eos_token or eos_token_id.") try: tokenizer.eos_token = eos_token tokenizer.eos_token_id = eos_token_id tokenizer.pad_token = eos_token tokenizer.pad_token_id = eos_token_id except: logging.info(f"[WARNING] Cannot set tokenizer.eos_token") logging.info(f"tokenizer's eos_token: {tokenizer.eos_token}, pad_token: {tokenizer.pad_token}") logging.info(f"tokenizer's eos_token_id: {tokenizer.eos_token_id}, pad_token_id: {tokenizer.pad_token_id}") num_gpus = torch.cuda.device_count() llm = LLM( model=model_path, tensor_parallel_size=num_gpus, enable_chunked_prefill=config["inference"]["enable_chunked_prefill"], gpu_memory_utilization=config["inference"]["gpu_memory_utilization"], trust_remote_code=config["inference"]["trust_remote_code"], dtype=torch.bfloat16, enforce_eager=config["inference"]["enforce_eager"], max_model_len=config["inference"]["max_model_len"], ) logging.info("vLLM model loaded successfully") return tokenizer, llm def generate_teacher_student_response_api(data_list, config): client = OpenAI( api_key=config["inference"]["api_key"], base_url=config["inference"]["base_url"] ) models = client.models.list() model = models.data[0].id logging.info(model) system_prompt = config["inference"]["system_prompt"] stream = config["inference"]["stream"] # load student model student_tokenizer = AutoTokenizer.from_pretrained( config["models"]["student"], trust_remote_code=True ) student_model = AutoModelForCausalLM.from_pretrained( config["models"]["student"], device_map="auto", trust_remote_code=True ) outcomes = [] for sample in tqdm(data_list, desc="Call remote model and generating responses"): # for teacher model if system_prompt == "": message=[ {'role': 'user', 'content': sample} ] else: message=[ {'role': 'system', 'content': system_prompt}, {'role': 'user', 'content': sample} ] completion = client.chat.completions.create( messages=message, model=model, max_completion_tokens=config["inference"]["max_new_tokens"], stream=stream, ) if stream: result = "" for chunk in completion: result += chunk.choices[0].delta.content else: result = completion.choices[0].message.content # for student model messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": sample} ] text = student_tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = student_tokenizer([text], return_tensors="pt").to(student_model.device) generated_ids = student_model.generate( **model_inputs, max_new_tokens=config["inference"]["max_new_tokens"] ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] rejected = student_tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] gen_data = {'prompt': sample, 'chosen': result, 'rejected': rejected} outcomes.append(gen_data) write_data_to_json_file(outcomes, config["dataset"]["labeled_path"]) def generate_model_response_batch(tokenizer, llm, data_list, config, batch_size=32, is_teacher_model=True): full_path = config["dataset"]["template"] template_dir = os.path.dirname(full_path) template_file = os.path.basename(full_path) env = Environment(loader=FileSystemLoader(template_dir)) template = env.get_template(template_file) outcomes = [] batches = [data_list[i:i + batch_size] for i in range(0, len(data_list), batch_size)] for batch in tqdm(batches, desc="Generating responses"): new_batch = [] for sample in batch: message={"role": "user", "content": sample} full_text = template.render( message=message, add_generation_prompt=True, add_output=False ) new_batch.append(full_text) model_outputs = llm.generate( new_batch, SamplingParams( n=1, top_k=1, temperature=config["inference"]["temperature"], seed=config["inference"]["seed"], skip_special_tokens=False, ignore_eos=False, max_tokens=config["inference"]["max_new_tokens"] ) ) model_responses = [output.outputs[0].text for output in model_outputs] if is_teacher_model: gen_data = [{'prompt': batch[i], 'chosen': model_responses[i]} for i in range(len(batch))] else: gen_data = [{'prompt': batch[i], 'rejected': model_responses[i]} for i in range(len(batch))] outcomes = outcomes + gen_data return outcomes def merge_outcomes(teacher_outcomes, student_outcomes, config): try: student_dict = {item['prompt']: item['rejected'] for item in student_outcomes} merged_outcomes = [] for teacher_item in teacher_outcomes: prompt = teacher_item['prompt'] if prompt in student_dict: merged_outcome = { 'prompt': prompt, 'chosen': teacher_item['chosen'], 'rejected': student_dict[prompt] } merged_outcomes.append(merged_outcome) with open(config["dataset"]["labeled_path"], 'w') as file: json.dump(merged_outcomes, file, ensure_ascii=False, indent=4) except Exception as e: print(f"An error occurred: {e}") def infer_with_teacher_model(config): logging.info('Generating distillation data from the teacher model!') data_list = read_json_field(config["dataset"]["instruction_path"]) try: job_type = config["job_type"] if job_type == "rank_dpo_api": generate_teacher_student_response_api(data_list, config) elif job_type == "rank_dpo_local": teacher_tokenizer, teacher_llm = load_tokenizer_and_vllm(config, is_teacher_model=True) teacher_outcomes = generate_model_response_batch(teacher_tokenizer, teacher_llm, data_list, config, is_teacher_model=True) del teacher_llm student_tokenizer, student_llm = load_tokenizer_and_vllm(config, is_teacher_model=False) student_outcomes = generate_model_response_batch(student_tokenizer, student_llm, data_list, config, is_teacher_model=False) del student_llm merge_outcomes(teacher_outcomes, student_outcomes, config) else: logging.error(f"Invalid job type: {job_type}") raise ValueError(f"Invalid job type: {job_type}") except ValueError as e: logging.error(f"Training job terminated: {e}") return def main(): parser = argparse.ArgumentParser() parser.add_argument('--config', type=str, required=True, help='path to the json config file') args = parser.parse_args() config = json.load(open(args.config)) infer_with_teacher_model(config) if __name__ == "__main__": main()