# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import json import argparse import logging import os import torch from transformers import AutoModelForCausalLM, AutoTokenizer from tqdm import tqdm logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') def read_json_field(filename): try: with open(filename, 'r') as file: data = json.load(file) output = [] for item in data: instruction = item["instruction"] output = item["output"] output.append({"prompt": instruction, "chosen": output}) return output except FileNotFoundError: logging.error("The file was not found.") except json.JSONDecodeError: logging.error("There was an error decoding the JSON file.") except Exception as e: logging.error(f"An error occurred: {e}") def write_data_to_json_file(data, file_path): try: with open(file_path, 'w') as file: json.dump(data, file, ensure_ascii=False, indent=4) logging.info(f"Data successfully written to {file_path}") except Exception as e: logging.error(f"An error occurred: {e}") def generate_student_response(data_list, config): # load student model student_tokenizer = AutoTokenizer.from_pretrained( config["models"]["student"], trust_remote_code=True ) student_model = AutoModelForCausalLM.from_pretrained( config["models"]["student"], device_map="auto", trust_remote_code=True ) outcomes = [] for sample in tqdm(data_list, desc="Call remote model and generating responses"): prompt = sample["prompt"] chosen = sample["chosen"] # for student model messages = [ {"role": "user", "content": prompt} ] text = student_tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = student_tokenizer([text], return_tensors="pt").to(student_model.device) generated_ids = student_model.generate( **model_inputs, max_new_tokens=config["inference"]["max_new_tokens"] ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] rejected = student_tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] gen_data = {'prompt': prompt, 'chosen': chosen, 'rejected': rejected} outcomes.append(gen_data) write_data_to_json_file(outcomes, config["dataset"]["labeled_path"]) def main(): parser = argparse.ArgumentParser() parser.add_argument('--config', type=str, required=True, help='path to the json config file') args = parser.parse_args() config = json.load(open(args.config)) data_list = read_json_field(config["dataset"]["instruction_path"]) generate_student_response(data_list, config) if __name__ == "__main__": main()