update training
This commit is contained in:
@@ -145,7 +145,7 @@ def prepare_vqa(
|
|||||||
|
|
||||||
assistant_message = {
|
assistant_message = {
|
||||||
"role": "assistant_gt",
|
"role": "assistant_gt",
|
||||||
"content": assistant_content_string, #[{"type": "text", "text": assistant_content_string}],
|
"content": [{"type": "text", "text": assistant_content_string}],
|
||||||
}
|
}
|
||||||
|
|
||||||
final_conversations.append([system_message, user_message, assistant_message])
|
final_conversations.append([system_message, user_message, assistant_message])
|
||||||
|
@@ -194,8 +194,8 @@ def generate_vqa_conversations(
|
|||||||
+ [{"type": "text", "text": "<image>" * len(found_image_paths) + question_text}],
|
+ [{"type": "text", "text": "<image>" * len(found_image_paths) + question_text}],
|
||||||
}
|
}
|
||||||
|
|
||||||
assistant_message = {"role": "assistant", "content": answer_text}
|
assistant_message = {"role": "assistant_gt", "content": answer_text} #[{"type": "text", "text": answer_text}]
|
||||||
|
|
||||||
conversation = [system_message, user_message, assistant_message]
|
conversation = [system_message, user_message, assistant_message]
|
||||||
final_conversations.append(conversation)
|
final_conversations.append(conversation)
|
||||||
|
|
||||||
@@ -283,7 +283,7 @@ def generate_multiturn_conversations(
|
|||||||
first_answer = get_conversational_answer(
|
first_answer = get_conversational_answer(
|
||||||
main_field, label_data, answer_bank, language
|
main_field, label_data, answer_bank, language
|
||||||
)
|
)
|
||||||
conversation.append({"role": "assistant", "content": first_answer})
|
conversation.append({"role": "assistant_gt", "content": first_answer})
|
||||||
|
|
||||||
# 4. Follow-up Turns for related fields
|
# 4. Follow-up Turns for related fields
|
||||||
for follow_up_field in related_fields:
|
for follow_up_field in related_fields:
|
||||||
@@ -299,7 +299,7 @@ def generate_multiturn_conversations(
|
|||||||
follow_up_answer = get_conversational_answer(
|
follow_up_answer = get_conversational_answer(
|
||||||
follow_up_field, label_data, answer_bank, language
|
follow_up_field, label_data, answer_bank, language
|
||||||
)
|
)
|
||||||
conversation.append({"role": "assistant", "content": follow_up_answer})
|
conversation.append({"role": "assistant_gt", "content": follow_up_answer})
|
||||||
|
|
||||||
final_conversations.append(conversation)
|
final_conversations.append(conversation)
|
||||||
|
|
||||||
@@ -454,12 +454,12 @@ def generate_multiturn_vq_question(
|
|||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|
||||||
parser = argparse.ArgumentParser(description="Generate VQA conversations from label data.")
|
parser = argparse.ArgumentParser(description="Generate VQA conversations from label data.")
|
||||||
parser.add_argument("--image_root", type=str, default="/home/nguyendc/docai_dataset/factures/distill_data/docai_mgp_facture_v2_0", help="Root directory containing images.")
|
parser.add_argument("--image_root", type=str, default="/home/nguyendc/docai_dataset/factures/distill_data/trial_2/psycho_distill_300", help="Root directory containing images.")
|
||||||
parser.add_argument("--labels", type=str, default="/home/nguyendc/docai_dataset/factures/distill_data/docai_mgp_facture_v2_0/label_data.json", help="Path to the label data JSON file.")
|
parser.add_argument("--labels", type=str, default="/home/nguyendc/docai_dataset/factures/distill_data/trial_2/docai_mgp_facture_v2_0_400/label_data.json", help="Path to the label data JSON file.")
|
||||||
parser.add_argument("--system_prompt", type=str, default="/home/nguyendc/phong-dev/distillation/easydistill/mmkd/dev-vqa/qa_bank/unstructured_prompt.txt", help="Path to the system prompt text file.")
|
parser.add_argument("--system_prompt", type=str, default="./dev-vqa/qa_bank/unstructured_prompt.txt", help="Path to the system prompt text file.")
|
||||||
parser.add_argument("--questions", type=str, default="/home/nguyendc/phong-dev/distill/prompt/question_bank.json", help="Path to the question bank JSON file.")
|
parser.add_argument("--questions", type=str, default="./dev-vqa/qa_bank/question_bank.json", help="Path to the question bank JSON file.")
|
||||||
parser.add_argument("--answers", type=str, default="/home/nguyendc/phong-dev/distill/prompt/answer_bank.json", help="Path to the answer bank JSON file.")
|
parser.add_argument("--answers", type=str, default="./dev-vqa/qa_bank/answer_bank.json", help="Path to the answer bank JSON file.")
|
||||||
parser.add_argument("--output", type=str, default="/home/nguyendc/phong-dev/distillation/data/vqa_label.json", help="Path to save the output VQA conversations JSON file.")
|
parser.add_argument("--output", type=str, default="./data/psycho_distill_300_vq_1_turn.json", help="Path to save the output VQA conversations JSON file.")
|
||||||
parser.add_argument("--ratio", type=float, default=0.4, help="Ratio of fields to sample for questions (default: 0.4).")
|
parser.add_argument("--ratio", type=float, default=0.4, help="Ratio of fields to sample for questions (default: 0.4).")
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
@@ -4,8 +4,8 @@ from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
|
|||||||
|
|
||||||
# --- 1. Define your model paths ---
|
# --- 1. Define your model paths ---
|
||||||
base_model_path = "Qwen/Qwen2.5-VL-3B-Instruct" # The original student model
|
base_model_path = "Qwen/Qwen2.5-VL-3B-Instruct" # The original student model
|
||||||
adapter_path = "./result/" # The folder where your LoRA adapter was saved
|
adapter_path = "/home/azureuser/finetuned_models/qwen2.5_vl/lora/Qwen2.5-VL-3B_distill_all_nolabel" # The folder where your LoRA adapter was saved
|
||||||
merged_model_path = "./qwen-3b-distilled-merged/" # Where to save the new, merged model
|
merged_model_path = "/home/azureuser/finetuned_models/qwen2.5_vl/Qwen2.5-VL-3B_distill_merged_all_nolabel" # Where to save the new, merged model
|
||||||
|
|
||||||
print("Loading base model...")
|
print("Loading base model...")
|
||||||
# --- 2. Load the base model ---
|
# --- 2. Load the base model ---
|
||||||
|
342
easydistill/mmkd/infer_2_custom.py
Normal file
342
easydistill/mmkd/infer_2_custom.py
Normal file
@@ -0,0 +1,342 @@
|
|||||||
|
# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ==============================================================================
|
||||||
|
|
||||||
|
import json, jsonlines
|
||||||
|
import math
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from tqdm import tqdm
|
||||||
|
from openai import OpenAI
|
||||||
|
import torch
|
||||||
|
from transformers import AutoProcessor, AutoTokenizer
|
||||||
|
from vllm import LLM, SamplingParams
|
||||||
|
from qwen_vl_utils import process_vision_info
|
||||||
|
import os
|
||||||
|
|
||||||
|
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||||
|
|
||||||
|
logging.basicConfig(
|
||||||
|
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def read_json_field(filename):
|
||||||
|
try:
|
||||||
|
with open(filename, "r") as file:
|
||||||
|
data = json.load(file)
|
||||||
|
return data
|
||||||
|
except FileNotFoundError:
|
||||||
|
logging.error("The file was not found.")
|
||||||
|
except json.JSONDecodeError:
|
||||||
|
logging.error("There was an error decoding the JSON file.")
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"An error occurred: {e}")
|
||||||
|
|
||||||
|
|
||||||
|
def write_data_to_json_file(data, file_path):
|
||||||
|
try:
|
||||||
|
with open(file_path, "w") as file:
|
||||||
|
json.dump(data, file, ensure_ascii=False, indent=4)
|
||||||
|
logging.info(f"Data successfully written to {file_path}")
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"An error occurred: {e}")
|
||||||
|
|
||||||
|
|
||||||
|
def load_tokenizer_and_vllm(config, eos_token=None):
|
||||||
|
|
||||||
|
model_path = config["models"]["teacher"]
|
||||||
|
logging.info(f"Loading processor & vLLM model from {model_path}")
|
||||||
|
|
||||||
|
# 1. Use AutoProcessor, which integrates the tokenizer, image_processor, and video_processor
|
||||||
|
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
||||||
|
|
||||||
|
# 2. eos / pad token 处理(与官方示例保持一致,不再显式改 pad_token)
|
||||||
|
if eos_token:
|
||||||
|
eos_token_id = processor.tokenizer.convert_tokens_to_ids(eos_token)
|
||||||
|
logging.info(f"eos_token {eos_token} from user input")
|
||||||
|
elif (
|
||||||
|
hasattr(processor.tokenizer, "eos_token_id")
|
||||||
|
and processor.tokenizer.eos_token_id is not None
|
||||||
|
):
|
||||||
|
eos_token_id = processor.tokenizer.eos_token_id
|
||||||
|
eos_token = processor.tokenizer.convert_ids_to_tokens(eos_token_id)
|
||||||
|
logging.info(f"Initial eos_token_id {eos_token_id} from tokenizer")
|
||||||
|
else:
|
||||||
|
raise ValueError("No available eos_token or eos_token_id.")
|
||||||
|
|
||||||
|
# 3. 设置 tokenizer 的 eos 相关字段(pad_token 保持 None,由 vLLM 自动处理)
|
||||||
|
try:
|
||||||
|
processor.tokenizer.eos_token = eos_token
|
||||||
|
processor.tokenizer.eos_token_id = eos_token_id
|
||||||
|
except Exception as e:
|
||||||
|
logging.warning(f"[WARNING] Cannot set eos_token: {e}")
|
||||||
|
|
||||||
|
logging.info(
|
||||||
|
f"processor.tokenizer eos_token: {processor.tokenizer.eos_token}, "
|
||||||
|
f"eos_token_id: {processor.tokenizer.eos_token_id}"
|
||||||
|
)
|
||||||
|
|
||||||
|
num_gpus = torch.cuda.device_count()
|
||||||
|
llm = LLM(
|
||||||
|
model=model_path,
|
||||||
|
tensor_parallel_size=num_gpus,
|
||||||
|
trust_remote_code=True,
|
||||||
|
limit_mm_per_prompt={"image": 10, "video": 10}, # 可按需调整
|
||||||
|
# 其余超参沿用原 config
|
||||||
|
gpu_memory_utilization=config["inference"].get("gpu_memory_utilization", 0.99),
|
||||||
|
max_model_len=config["inference"].get("max_model_len", 4096),
|
||||||
|
enforce_eager=config["inference"].get("enforce_eager", False),
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Qwen2.5-VL vLLM model loaded successfully")
|
||||||
|
# return processor, llm
|
||||||
|
|
||||||
|
return processor, llm
|
||||||
|
|
||||||
|
|
||||||
|
def generate_teacher_response_batch(processor, llm, data_list, config, batch_size=1):
|
||||||
|
# NOTE: This turn-by-turn generation is complex and works best with a batch size of 1.
|
||||||
|
|
||||||
|
final_conversations = []
|
||||||
|
|
||||||
|
# This version does not need logits, so the sampling params are simpler.
|
||||||
|
sampling_params = SamplingParams(
|
||||||
|
n=1,
|
||||||
|
temperature=config["inference"]["temperature"],
|
||||||
|
seed=config["inference"]["seed"],
|
||||||
|
max_tokens=config["inference"]["max_new_tokens"],
|
||||||
|
)
|
||||||
|
|
||||||
|
for sample in tqdm(data_list, desc="Generating turn-by-turn conversations"):
|
||||||
|
try:
|
||||||
|
current_conversation = []
|
||||||
|
|
||||||
|
# --- This is the same multi-turn logic as the logits function ---
|
||||||
|
for i, message in enumerate(sample):
|
||||||
|
current_conversation.append(message)
|
||||||
|
|
||||||
|
# If the current message is from the user, generate a response
|
||||||
|
if message.get("role") == "user":
|
||||||
|
# The prompt is the entire conversation up to this point
|
||||||
|
prompt_text = processor.apply_chat_template(
|
||||||
|
current_conversation,
|
||||||
|
tokenize=False,
|
||||||
|
add_generation_prompt=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
image_inputs, _ = process_vision_info(current_conversation)
|
||||||
|
mm_data = {"image": image_inputs} if image_inputs else {}
|
||||||
|
|
||||||
|
# Generate the next assistant response
|
||||||
|
outputs = llm.generate(
|
||||||
|
[{"prompt": prompt_text, "multi_modal_data": mm_data}],
|
||||||
|
sampling_params=sampling_params,
|
||||||
|
)
|
||||||
|
|
||||||
|
generated_text = outputs[0].outputs[0].text
|
||||||
|
|
||||||
|
# Add the newly generated assistant message to the conversation
|
||||||
|
assistant_message = {
|
||||||
|
"role": "assistant",
|
||||||
|
"content": [{"type": "text", "text": generated_text}],
|
||||||
|
}
|
||||||
|
current_conversation.append(assistant_message)
|
||||||
|
|
||||||
|
# After processing all turns, save the final conversation
|
||||||
|
final_conversations.append(current_conversation)
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"An error occurred processing a sample: {e}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Save the final, fully completed conversational data
|
||||||
|
# write_data_to_json_file(final_conversations, config["dataset"]["labeled_path"])
|
||||||
|
return final_conversations
|
||||||
|
|
||||||
|
|
||||||
|
def generate_teacher_logits_batch(processor, llm, data_list, config, batch_size=1):
|
||||||
|
# NOTE: This turn-by-turn generation is complex and works best with a batch size of 1.
|
||||||
|
|
||||||
|
final_conversations = []
|
||||||
|
final_logits = []
|
||||||
|
|
||||||
|
sampling_params = SamplingParams(
|
||||||
|
n=1,
|
||||||
|
temperature=config["inference"]["temperature"],
|
||||||
|
seed=config["inference"]["seed"],
|
||||||
|
max_tokens=config["inference"]["max_new_tokens"],
|
||||||
|
# logprobs=config["inference"]["top_logits_num"],
|
||||||
|
output_logits=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
for sample in data_list:
|
||||||
|
# tqdm(data_list, desc="Generating turn-by-turn conversations"):
|
||||||
|
try:
|
||||||
|
current_conversation = []
|
||||||
|
current_logits_sequence = []
|
||||||
|
|
||||||
|
# --- MODIFICATION: Loop through each message to build the conversation turn by turn ---
|
||||||
|
for i, message in enumerate(sample):
|
||||||
|
current_conversation.append(message)
|
||||||
|
|
||||||
|
# If the current message is from the user, generate a response
|
||||||
|
if message.get("role") == "user":
|
||||||
|
# The prompt is the entire conversation up to this point
|
||||||
|
prompt_text = processor.apply_chat_template(
|
||||||
|
current_conversation,
|
||||||
|
tokenize=False,
|
||||||
|
add_generation_prompt=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
image_inputs, _ = process_vision_info(current_conversation)
|
||||||
|
mm_data = {"image": image_inputs} if image_inputs else {}
|
||||||
|
|
||||||
|
# Generate the next assistant response
|
||||||
|
outputs = llm.generate(
|
||||||
|
[{"prompt": prompt_text, "multi_modal_data": mm_data}],
|
||||||
|
sampling_params=sampling_params,
|
||||||
|
)
|
||||||
|
|
||||||
|
generated_text = outputs[0].outputs[0].text
|
||||||
|
logprobs_for_turn = outputs[0].outputs[0].logits # logits instead of logprobs
|
||||||
|
|
||||||
|
# Add the newly generated assistant message to the conversation
|
||||||
|
assistant_message = {
|
||||||
|
"role": "assistant",
|
||||||
|
"content": [{"type": "text", "text": generated_text}],
|
||||||
|
}
|
||||||
|
current_conversation.append(assistant_message)
|
||||||
|
|
||||||
|
# Add the logits for this turn to our sequence
|
||||||
|
if logprobs_for_turn is not None:
|
||||||
|
current_logits_sequence.extend(logits_for_turn.cpu().tolist())
|
||||||
|
|
||||||
|
# After processing all turns, save the final results for this sample
|
||||||
|
final_conversations.append(current_conversation)
|
||||||
|
final_logits.append(current_logits_sequence)
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"An error occurred processing a sample: {e}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
processed_logits = final_logits
|
||||||
|
|
||||||
|
with jsonlines.open(config["dataset"]["logits_path"], mode="w") as writer:
|
||||||
|
writer.write_all(processed_logits)
|
||||||
|
|
||||||
|
# Save the final, fully completed conversational data
|
||||||
|
# write_data_to_json_file(final_conversations, config["dataset"]["labeled_path"])
|
||||||
|
return final_conversations, processed_logits
|
||||||
|
|
||||||
|
|
||||||
|
def generate_teacher_response_api(data_list, config):
|
||||||
|
client = OpenAI(
|
||||||
|
api_key=config["inference"]["api_key"], base_url=config["inference"]["base_url"]
|
||||||
|
)
|
||||||
|
model = client.models.list().data[0].id
|
||||||
|
logging.info(f"Using remote model: {model}")
|
||||||
|
|
||||||
|
final_conversations = []
|
||||||
|
|
||||||
|
for sample in data_list:
|
||||||
|
# tqdm(
|
||||||
|
# data_list, desc="Calling remote API for multi-turn conversations"
|
||||||
|
# ):
|
||||||
|
try:
|
||||||
|
current_conversation = []
|
||||||
|
# Loop through each message to build the conversation turn by turn
|
||||||
|
for message in sample:
|
||||||
|
current_conversation.append(message)
|
||||||
|
|
||||||
|
# If the current message is from the user, generate a response
|
||||||
|
if message.get("role") == "user":
|
||||||
|
# The API expects the full history for context
|
||||||
|
completion = client.chat.completions.create(
|
||||||
|
messages=current_conversation,
|
||||||
|
model=model,
|
||||||
|
max_tokens=config["inference"]["max_new_tokens"],
|
||||||
|
)
|
||||||
|
generated_text = completion.choices[0].message.content
|
||||||
|
|
||||||
|
# Add the newly generated assistant message
|
||||||
|
assistant_message = {
|
||||||
|
"role": "assistant",
|
||||||
|
"content": generated_text, # API returns a simple string
|
||||||
|
}
|
||||||
|
current_conversation.append(assistant_message)
|
||||||
|
|
||||||
|
final_conversations.append(current_conversation)
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"An error occurred processing a sample with the API: {e}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
write_data_to_json_file(final_conversations, config["dataset"]["labeled_path"])
|
||||||
|
|
||||||
|
|
||||||
|
def infer_with_teacher_model(config):
|
||||||
|
logging.info("Generating distillation data from the teacher model!")
|
||||||
|
data_list = read_json_field(config["dataset"]["instruction_path"])
|
||||||
|
|
||||||
|
|
||||||
|
try:
|
||||||
|
job_type = config["job_type"]
|
||||||
|
|
||||||
|
if job_type == "mmkd_black_box_api":
|
||||||
|
# API calls don't need a local model.
|
||||||
|
generate_teacher_response_api(data_list, config)
|
||||||
|
|
||||||
|
elif job_type in ["mmkd_black_box_local", "mmkd_white_box"]:
|
||||||
|
# 1. Load the model and processor a single time at the start.
|
||||||
|
processor, llm = load_tokenizer_and_vllm(config)
|
||||||
|
|
||||||
|
if job_type == "mmkd_black_box_local":
|
||||||
|
# 2. The function now returns the results.
|
||||||
|
final_conversations = generate_teacher_response_batch(
|
||||||
|
processor, llm, data_list, config
|
||||||
|
)
|
||||||
|
# 3. Save the final results.
|
||||||
|
write_data_to_json_file(final_conversations, config["dataset"]["labeled_path"])
|
||||||
|
|
||||||
|
elif job_type == "mmkd_white_box":
|
||||||
|
# 2. The function now returns both conversations and logits.
|
||||||
|
final_conversations, final_logits = generate_teacher_logits_batch(
|
||||||
|
processor, llm, data_list, config
|
||||||
|
)
|
||||||
|
# 3. Save both final results files.
|
||||||
|
logging.info("Writing all accumulated data to final output files...")
|
||||||
|
with jsonlines.open(config["dataset"]["logits_path"], mode='w') as writer:
|
||||||
|
writer.write_all(final_logits)
|
||||||
|
write_data_to_json_file(final_conversations, config["dataset"]["labeled_path"])
|
||||||
|
|
||||||
|
else:
|
||||||
|
logging.error(f"Invalid job type: {job_type}")
|
||||||
|
raise ValueError(f"Invalid job type: {job_type}")
|
||||||
|
|
||||||
|
except ValueError as e:
|
||||||
|
logging.error(f"Training job terminated: {e}")
|
||||||
|
return
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--config", type=str, required=True, help="path to the json config file"
|
||||||
|
)
|
||||||
|
args = parser.parse_args()
|
||||||
|
config = json.load(open(args.config))
|
||||||
|
infer_with_teacher_model(config)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
@@ -115,13 +115,13 @@ def generate_teacher_logits(processor, llm, data_list, config):
|
|||||||
def main():
|
def main():
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument("--config", type=str, required=True)
|
parser.add_argument("--config", type=str, required=True)
|
||||||
# --- MODIFICATION: Added arguments to define the data chunk ---
|
# arguments to define the data chunk ---
|
||||||
parser.add_argument("--start_index", type=int, required=True)
|
parser.add_argument("--start_index", type=int, required=True)
|
||||||
parser.add_argument("--end_index", type=int, required=True)
|
parser.add_argument("--end_index", type=int, required=True)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
config = json.load(open(args.config))
|
config = json.load(open(args.config))
|
||||||
|
|
||||||
# --- MODIFICATION: The main logic is now simpler ---
|
|
||||||
logging.info(f"Processing chunk from index {args.start_index} to {args.end_index}")
|
logging.info(f"Processing chunk from index {args.start_index} to {args.end_index}")
|
||||||
full_data_list = read_json_field(config["dataset"]["instruction_path"])
|
full_data_list = read_json_field(config["dataset"]["instruction_path"])
|
||||||
|
|
||||||
|
@@ -1,5 +1,48 @@
|
|||||||
{
|
{
|
||||||
"templates": [
|
"templates": [
|
||||||
|
{
|
||||||
|
"prompts": {
|
||||||
|
"en": [
|
||||||
|
"Extract all structured information from the document.",
|
||||||
|
"Provide a complete JSON output of all relevant fields from the invoice.",
|
||||||
|
"Parse the entire document and return all available details.",
|
||||||
|
"Get all invoice details, including provider, patient, and financial information."
|
||||||
|
],
|
||||||
|
"fr": [
|
||||||
|
"Extraire toutes les informations structurées du document.",
|
||||||
|
"Fournir une sortie JSON complète de tous les champs pertinents de la facture.",
|
||||||
|
"Analyser l'intégralité du document et retourner tous les détails disponibles.",
|
||||||
|
"Obtenir tous les détails de la facture, y compris les informations sur le prestataire, le patient et les finances."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"group_name": "full_invoice_extraction",
|
||||||
|
"target_keys": [
|
||||||
|
"is_bill",
|
||||||
|
"profession",
|
||||||
|
"adeli_number",
|
||||||
|
"rpps_number",
|
||||||
|
"finess_number",
|
||||||
|
"doctor_name",
|
||||||
|
"total_billed",
|
||||||
|
"bill_paid",
|
||||||
|
"amount_paid",
|
||||||
|
"mandatory_coverage",
|
||||||
|
"complementary_coverage",
|
||||||
|
"client_part",
|
||||||
|
"remaining_payment",
|
||||||
|
"insured_name",
|
||||||
|
"insured_dob",
|
||||||
|
"beneficiary_name",
|
||||||
|
"beneficiary_dob",
|
||||||
|
"care_start_date",
|
||||||
|
"care_end_date",
|
||||||
|
"invoice_date",
|
||||||
|
"security_number",
|
||||||
|
"invoice_issuer",
|
||||||
|
"currency",
|
||||||
|
"items"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"prompts": {
|
"prompts": {
|
||||||
"en": [
|
"en": [
|
||||||
|
@@ -112,9 +112,10 @@ class DistillSFTTrainer(SFTTrainer):
|
|||||||
student_logits: torch.Tensor,
|
student_logits: torch.Tensor,
|
||||||
teacher_logits: torch.Tensor,
|
teacher_logits: torch.Tensor,
|
||||||
labels: Optional[torch.Tensor],
|
labels: Optional[torch.Tensor],
|
||||||
|
temperature: float = 1.0,
|
||||||
):
|
):
|
||||||
student_logits = student_logits[:, : self.max_seq_length, :]
|
student_logits = student_logits[:, : self.max_seq_length, :]
|
||||||
teacher_probs = teacher_logits[
|
teacher_logits = teacher_logits[
|
||||||
:, : student_logits.size(1), : student_logits.size(-1)
|
:, : student_logits.size(1), : student_logits.size(-1)
|
||||||
]
|
]
|
||||||
mask = (
|
mask = (
|
||||||
@@ -124,29 +125,34 @@ class DistillSFTTrainer(SFTTrainer):
|
|||||||
)
|
)
|
||||||
|
|
||||||
mask = mask[:, : self.max_seq_length]
|
mask = mask[:, : self.max_seq_length]
|
||||||
|
|
||||||
|
# Apply temperature scaling
|
||||||
|
student_log_probs = F.log_softmax(student_logits / temperature, dim=-1)
|
||||||
|
teacher_probs = F.softmax(teacher_logits / temperature, dim=-1)
|
||||||
|
|
||||||
if self.distillation_type == "forward_kld":
|
if self.distillation_type == "forward_kld":
|
||||||
# Forward KLD: student learns from teacher (original implementation)
|
# Forward KLD: student learns from teacher (original implementation)
|
||||||
loss = F.kl_div(
|
loss = F.kl_div(
|
||||||
F.log_softmax(student_logits, dim=-1),
|
student_log_probs,
|
||||||
teacher_probs,
|
teacher_probs,
|
||||||
reduction="none",
|
reduction="none",
|
||||||
log_target=False,
|
log_target=False,
|
||||||
).sum(dim=-1) / torch.sum(mask.view(-1), dim=0)
|
).sum(dim=-1)# / torch.sum(mask.view(-1), dim=0)
|
||||||
elif self.distillation_type == "reverse_kld":
|
elif self.distillation_type == "reverse_kld":
|
||||||
# Reverse KLD: teacher provides certainty to student
|
# Reverse KLD: teacher provides certainty to student
|
||||||
loss = F.kl_div(
|
loss = F.kl_div(
|
||||||
torch.log(teacher_probs.clamp(min=1e-10)), # avoid log(0)
|
torch.log(teacher_probs.clamp(min=1e-10)), # avoid log(0)
|
||||||
F.softmax(student_logits, dim=-1),
|
F.softmax(student_logits / temperature, dim=-1),
|
||||||
reduction="none",
|
reduction="none",
|
||||||
log_target=False,
|
log_target=False,
|
||||||
).sum(dim=-1) / torch.sum(mask.view(-1), dim=0)
|
).sum(dim=-1)# / torch.sum(mask.view(-1), dim=0)
|
||||||
else:
|
else:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"Unsupported distillation type: {self.distillation_type}. Use 'forward_kld' or 'reverse_kld'"
|
f"Unsupported distillation type: {self.distillation_type}. Use 'forward_kld' or 'reverse_kld'"
|
||||||
)
|
)
|
||||||
|
|
||||||
return (loss * mask).sum() / mask.sum()
|
return (loss * mask).sum() / mask.sum() * (temperature ** 2)
|
||||||
|
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def _shift_tensor_right(
|
def _shift_tensor_right(
|
||||||
@@ -175,12 +181,8 @@ class DistillSFTTrainer(SFTTrainer):
|
|||||||
return_outputs=False,
|
return_outputs=False,
|
||||||
num_items_in_batch=None,
|
num_items_in_batch=None,
|
||||||
):
|
):
|
||||||
label_sources = inputs.pop("label_sources")
|
|
||||||
labels = inputs.get("labels")
|
|
||||||
|
|
||||||
outputs = model(**inputs)
|
outputs = model(**inputs)
|
||||||
# lm_loss = outputs.loss
|
lm_loss = outputs.loss
|
||||||
|
|
||||||
if self.logits_dir:
|
if self.logits_dir:
|
||||||
teacher_logits = self._load_teacher_logits(
|
teacher_logits = self._load_teacher_logits(
|
||||||
batch_size=inputs["input_ids"].size(0),
|
batch_size=inputs["input_ids"].size(0),
|
||||||
@@ -193,65 +195,20 @@ class DistillSFTTrainer(SFTTrainer):
|
|||||||
device=model.device,
|
device=model.device,
|
||||||
no_model_batch={"label": inputs.get("labels", None)},
|
no_model_batch={"label": inputs.get("labels", None)},
|
||||||
)
|
)
|
||||||
|
distil_loss = self._compute_white_box_distillation_loss(
|
||||||
student_logits = outputs.logits
|
student_logits=outputs.logits,
|
||||||
|
teacher_logits=teacher_logits,
|
||||||
# ===== Calculate the two types of losses for the entire batch
|
labels=inputs.get("labels", None),
|
||||||
sft_lossn_fn = torch.nn.CrossEntropyLoss(reduction="none")
|
)
|
||||||
# Reshape logits and labels for loss computation
|
total_loss = (1 - self.kd_ratio) * lm_loss + self.kd_ratio * distil_loss
|
||||||
vocab_size = student_logits.size(-1)
|
|
||||||
|
|
||||||
# SFT Loss (vs. hard labels)
|
|
||||||
sft_loss_per_token = sft_lossn_fn(
|
|
||||||
student_logits.view(-1, vocab_size),
|
|
||||||
labels.view(-1)
|
|
||||||
).view(student_logits.size(0), -1)
|
|
||||||
|
|
||||||
# Conditional logic sample by sample
|
|
||||||
total_loss = []
|
|
||||||
for i in range(student_logits.size(0)):
|
|
||||||
# create mask to only consider the actual response tokens for this sample
|
|
||||||
sample_mask = (labels[i] != -100).float()
|
|
||||||
num_tokens = sample_mask.sum()
|
|
||||||
|
|
||||||
if num_tokens == 0: continue
|
|
||||||
|
|
||||||
# Calculate the average SFT loss for this sample
|
|
||||||
sample_sft_loss = (sft_loss_per_token[i] * sample_mask).sum() / num_tokens
|
|
||||||
|
|
||||||
# Calculate the distillation loss for this sample
|
|
||||||
sample_distil_loss = self._compute_white_box_distillation_loss(
|
|
||||||
student_logits=student_logits[i].unsqueeze(0),
|
|
||||||
teacher_logits=teacher_logits[i].unsqueeze(0),
|
|
||||||
labels=labels[i].unsqueeze(0),
|
|
||||||
)
|
|
||||||
|
|
||||||
if label_sources[i] == "human":
|
|
||||||
# for human-labeled data, use a high SFT ratio
|
|
||||||
ratio = 0.7
|
|
||||||
sample_loss = (ratio * sample_sft_loss) + \
|
|
||||||
((1 - ratio) * sample_distil_loss)
|
|
||||||
else: # only teacher loss
|
|
||||||
# for pseudo-labeled data, use only the distillation loss
|
|
||||||
sample_loss = sample_distil_loss
|
|
||||||
|
|
||||||
total_loss.append(sample_loss)
|
|
||||||
|
|
||||||
# Average the loss across the batch
|
|
||||||
final_loss = torch.stack(total_loss).mean()
|
|
||||||
else:
|
else:
|
||||||
# Fallback to standard SFT if no logits are provided
|
total_loss = lm_loss
|
||||||
final_loss = outputs.loss
|
return (total_loss, outputs) if return_outputs else total_loss
|
||||||
|
|
||||||
return (final_loss, outputs) if return_outputs else final_loss
|
|
||||||
|
|
||||||
|
|
||||||
def train(config):
|
def train(config):
|
||||||
raw_data = []
|
with open(config["dataset"]["labeled_path"], "r") as f:
|
||||||
with jsonlines.open(config["dataset"]["labeled_path"]) as reader:
|
raw_data = json.load(f)
|
||||||
for obj in reader:
|
|
||||||
raw_data.append(obj)
|
|
||||||
|
|
||||||
dataset = MMDataset(raw_data)
|
dataset = MMDataset(raw_data)
|
||||||
student_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
student_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
||||||
config["models"]["student"],
|
config["models"]["student"],
|
||||||
@@ -264,9 +221,9 @@ def train(config):
|
|||||||
|
|
||||||
# Creating LoRA configuration
|
# Creating LoRA configuration
|
||||||
lora_config = LoraConfig(
|
lora_config = LoraConfig(
|
||||||
r=16, # Rank of the LoRA layers
|
r=config["training"]["lora_rank"], # Rank of the LoRA layers
|
||||||
lora_alpha=32, # Scaling factor for the LoRA layers
|
lora_alpha=config["training"]["lora_alpha"], # Scaling factor for the LoRA layers
|
||||||
lora_dropout=0.1, # Dropout rate for the LoRA layers
|
lora_dropout=config["training"]{"lora_dropout"}, # Dropout rate for the LoRA layers
|
||||||
bias="none", # No bias in LoRA layers
|
bias="none", # No bias in LoRA layers
|
||||||
task_type="CAUSAL_LM", # Task type for the LoRA layers
|
task_type="CAUSAL_LM", # Task type for the LoRA layers
|
||||||
target_modules=["q_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "o_proj"], # Target modules for LoRA
|
target_modules=["q_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "o_proj"], # Target modules for LoRA
|
||||||
@@ -280,64 +237,29 @@ def train(config):
|
|||||||
def collate_fn(examples):
|
def collate_fn(examples):
|
||||||
texts = []
|
texts = []
|
||||||
images = []
|
images = []
|
||||||
label_sources = []
|
|
||||||
|
|
||||||
for example in examples:
|
for example in examples:
|
||||||
|
|
||||||
is_human_labeled = any(msg.get("role") == "assistant_gt" for msg in example)
|
|
||||||
label_sources.append("human" if is_human_labeled else "teacher")
|
|
||||||
|
|
||||||
chat = example
|
chat = example
|
||||||
text = processor.apply_chat_template(chat, tokenize=False, add_generation_prompt=False)
|
text = processor.apply_chat_template(chat, tokenize=False)
|
||||||
texts.append(text)
|
texts.append(text)
|
||||||
|
|
||||||
image, _ = process_vision_info(example)
|
image, _ = process_vision_info(example)
|
||||||
images.append(image)
|
images.append(image)
|
||||||
|
|
||||||
batch = processor(text=texts, images=images, return_tensors="pt", padding=True)
|
batch = processor(text=texts, images=images, return_tensors="pt", padding=True)
|
||||||
|
|
||||||
# Prepare labels tensor with masking for multi-turn conversations
|
|
||||||
labels = batch["input_ids"].clone()
|
labels = batch["input_ids"].clone()
|
||||||
|
labels[labels == processor.tokenizer.pad_token_id] = -100
|
||||||
|
|
||||||
for i, example in enumerate(examples):
|
if isinstance(processor, Qwen2_5_VLProcessor):
|
||||||
# Tokenize each turn individually to find the positions of assistant responses
|
image_tokens = [151652, 151653, 151655]
|
||||||
prompt_turns = [msg for msg in example if msg.get("role") not in ["assistant", "assistant_gt"]]
|
else:
|
||||||
|
image_tokens = [
|
||||||
prompt_text = processor.apply_chat_template(prompt_turns, tokenize=False, add_generation_prompt=False)
|
processor.tokenizer.convert_tokens_to_ids(processor.image_token)
|
||||||
prompt_ids = processor.tokenizer(prompt_text, add_special_tokens=False)['input_ids']
|
]
|
||||||
|
|
||||||
response_template = "\n<|im_start|>assistant\n"
|
|
||||||
response_template_ids = processor.tokenizer.encode(response_template, add_special_tokens=False)
|
|
||||||
|
|
||||||
# Mask all tokens that are part of the prompt
|
|
||||||
current_labels = labels[i]
|
|
||||||
prompt_len = len(prompt_ids) # A good approximation of where the first response starts
|
|
||||||
|
|
||||||
# Rebuild the labels tensor from scratch.
|
|
||||||
new_labels = torch.full_like(batch["input_ids"][i], -100)
|
|
||||||
|
|
||||||
# Tokenize turn-by-turn and only keep assistant parts
|
|
||||||
full_text_tokenized = processor.tokenizer(texts[i], add_special_tokens=False)['input_ids']
|
|
||||||
|
|
||||||
current_pos = 0
|
|
||||||
for turn in example:
|
|
||||||
# Tokenize the turn text
|
|
||||||
turn_text = processor.apply_chat_template([turn], tokenize=False, add_generation_prompt=False)
|
|
||||||
turn_token_ids = processor.tokenizer(turn_text, add_special_tokens=False)["input_ids"]
|
|
||||||
|
|
||||||
turn_len = len(turn_token_ids)
|
|
||||||
|
|
||||||
if turn.get("role") in ["assistant", "assistant_gt"]:
|
|
||||||
end_pos = min(current_pos + turn_len, new_labels.shape[0])
|
|
||||||
# Copy the labels for this assistant turn
|
|
||||||
new_labels[current_pos:end_pos] = batch["input_ids"][i, current_pos:end_pos]
|
|
||||||
|
|
||||||
current_pos += turn_len
|
|
||||||
|
|
||||||
labels[i] = new_labels
|
|
||||||
|
|
||||||
|
for image_token_id in image_tokens:
|
||||||
|
labels[labels == image_token_id] = -100
|
||||||
batch["labels"] = labels
|
batch["labels"] = labels
|
||||||
batch["label_sources"] = label_sources
|
|
||||||
return batch
|
return batch
|
||||||
|
|
||||||
try:
|
try:
|
Reference in New Issue
Block a user