diff --git a/configs/instruct_sample_api.json b/configs/instruct_sample_api.json new file mode 100644 index 0000000..c77722d --- /dev/null +++ b/configs/instruct_sample_api.json @@ -0,0 +1,12 @@ +{ + "job_type": "instruct_sample_api", + "dataset": { + "input_path": "instruct_input.json", + "output_path": "instruct_output.json" + }, + "inference":{ + "base_url": "ENDPOINT", + "api_key": "TOKEN", + "max_new_tokens": 8196 + } +} \ No newline at end of file diff --git a/easydistill/eval/task_sampler.py b/easydistill/eval/task_sampler.py new file mode 100644 index 0000000..11c3419 --- /dev/null +++ b/easydistill/eval/task_sampler.py @@ -0,0 +1,181 @@ + +# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================== + +import json +import argparse +import logging +import os +import re +from tqdm import tqdm +from openai import OpenAI +from collections import Counter + + +logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') + + +predefined_distribution = { + 'Math': 0.167, + 'Code Generation': 0.083, + 'Writing': 0.017, + 'Computer Science': 0.017, + 'Reasoning': 0.167, + 'Complex Format': 0.017, + 'Code Debug': 0.083, + 'Common-Sense': 0.017, + 'Counterfactual': 0.017, + 'Multilingual': 0.017, + 'Roleplay': 0.017, + 'Biology': 0.017, + 'Technology': 0.017, + 'Ethics': 0.017, + 'Sport': 0.017, + 'Law': 0.017, + 'Medicine': 0.017, + 'Literature': 0.017, + 'Entertainment': 0.017, + 'Art': 0.017, + 'Music': 0.017, + 'Toxicity': 0.017, + 'Economy': 0.017, + 'Physics': 0.017, + 'History': 0.017, + 'Chemistry': 0.017, + 'Philosophy': 0.017, + 'Health': 0.017, + 'Ecology': 0.017, + 'Grammar': 0.017, + 'Paraphrase': 0.017, + 'Others': 0.041 +} + +predefined_prompt = """ + You are a data annotation expert. Please classify the task type or domain of #Given Instruction. + The task type or domain should be in the list: [’Math’, ’Code Generation’, ’Writing’, ’Computer Science’, + ’Reasoning’, ’Complex Format’, ’Code Debug’, ’Common-Sense’, ’Counterfactual’, ’Multilingual’, ’Roleplay’, + ’Biology’, ’Technology’, ’Ethics’, ’Sport’, ’Law’, ’Medicine’, ’Literature’, ’Entertainment’, ’Art’, ’Music’, + ’Toxicity’, ’Economy’, ’Physics’, ’History’, ’Chemistry’, ’Philosophy’,’Health’,’Ecology’,’Grammar’,’Paraphrase’, + ’Others’]. You should place your answer enclosed within tags, such as Math. + Do not return anything else. + #Given Instruction#: +""" + +def extract_answer(content): + pattern = r'(.*?)' + match = re.search(pattern, content, re.DOTALL) + if match: + return match.group(1) + else: + return None + + +def read_json_fields(filename): + try: + with open(filename, 'r') as file: + data = json.load(file) + return data + except FileNotFoundError: + logging.error("The file was not found.") + except json.JSONDecodeError: + logging.error("There was an error decoding the JSON file.") + except Exception as e: + logging.error(f"An error occurred: {e}") + + +def write_data_to_json_file(data, file_path): + try: + with open(file_path, 'w') as file: + json.dump(data, file, ensure_ascii=False, indent=4) + logging.info(f"Data successfully written to {file_path}") + except Exception as e: + logging.error(f"An error occurred: {e}") + + +def classify_instruction(instruction, client, model, config): + message = [ + {"role": "user", "content": predefined_prompt + "\n" + instruction} + ] + completion = client.chat.completions.create( + messages = message, + model = model, + max_completion_tokens = config["inference"]["max_new_tokens"] + ) + result = completion.choices[0].message.content.strip() + result = extract_answer(result) + if result is None or result not in predefined_distribution.keys(): + result = 'Others' + return result + + +def generate_teacher_response_api(data_list, config): + client = OpenAI( + api_key = config["inference"]["api_key"], + base_url = config["inference"]["base_url"] + ) + models = client.models.list() + model = models.data[0].id + logging.info(model) + + classified_data = [] + for sample in tqdm(data_list, desc="Call remote model and generating responses"): + instruction = sample["instruction"] + category = classify_instruction(item['instruction'], client, model) + new_sample = sample.copy() + new_sample['category'] = category + classified_data.append(new_sample) + + # Count occurrences per category + category_counts = Counter(item['category'] for item in classified_data) + total_samples = len(classified_data) + + # Resample according to predefined distribution + resampled_data = [] + for category, target_ratio in predefined_distribution.items(): + target_count = int(total_samples * target_ratio) + category_samples = [item for item in classified_data if item['category'] == category] + if len(category_samples) == 0: + logging.warning("No instructions are provided for the category: " + category) + continue + if len(category_samples) > target_count: + # Randomly sample the required number of instructions + resampled_category_samples = random.sample(category_samples, target_count) + else: + # If not enough samples, repeat the existing ones + resampled_category_samples = category_samples * (target_count // len(category_samples)) + random.sample( + category_samples, target_count % len(category_samples)) + resampled_data.extend(resampled_category_samples) + + write_data_to_json_file(resampled_data, config["dataset"]["output_path"]) + + +def sample_with_teacher_model(config): + logging.info('Generating distillation data from the teacher model!') + data_list = read_json_fields(config["dataset"]["input_path"]) + job_type = config["job_type"] + assert job_type == "instruct_sample_api" + generate_teacher_response_api(data_list, config) + + +def main(): + parser = argparse.ArgumentParser() + parser.add_argument('--config', type=str, required=True, help='path to the json config file') + args = parser.parse_args() + config = json.load(open(args.config)) + sample_with_teacher_model(config) + + +if __name__ == "__main__": + main() \ No newline at end of file