feat: add mmkd
This commit is contained in:
30
configs/mmkd_black_box_api.json
Normal file
30
configs/mmkd_black_box_api.json
Normal file
@@ -0,0 +1,30 @@
|
|||||||
|
{
|
||||||
|
"job_type": "mmkd_black_box_api",
|
||||||
|
"dataset": {
|
||||||
|
"instruction_path": "train.json",
|
||||||
|
"labeled_path": "train_labeled.json",
|
||||||
|
"seed": 42
|
||||||
|
},
|
||||||
|
"inference":{
|
||||||
|
"base_url": "ENDPOINT",
|
||||||
|
"api_key": "TOKEN",
|
||||||
|
"system_prompt" : "You are a helpful assistant.",
|
||||||
|
"max_new_tokens": 512
|
||||||
|
},
|
||||||
|
"models": {
|
||||||
|
"student": "student/Qwen/Qwen2.5-VL-3B-Instruct/"
|
||||||
|
},
|
||||||
|
"training": {
|
||||||
|
"output_dir": "./result/",
|
||||||
|
"num_train_epochs": 3,
|
||||||
|
"per_device_train_batch_size": 1,
|
||||||
|
"gradient_accumulation_steps": 8,
|
||||||
|
"max_length": 512,
|
||||||
|
"save_steps": 1000,
|
||||||
|
"logging_steps": 1,
|
||||||
|
"learning_rate": 2e-5,
|
||||||
|
"weight_decay": 0.05,
|
||||||
|
"warmup_ratio": 0.1,
|
||||||
|
"lr_scheduler_type": "cosine"
|
||||||
|
}
|
||||||
|
}
|
122
easydistill/mmkd/infer.py
Normal file
122
easydistill/mmkd/infer.py
Normal file
@@ -0,0 +1,122 @@
|
|||||||
|
|
||||||
|
# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ==============================================================================
|
||||||
|
|
||||||
|
import json
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from tqdm import tqdm
|
||||||
|
from openai import OpenAI
|
||||||
|
|
||||||
|
|
||||||
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
||||||
|
|
||||||
|
|
||||||
|
def read_json_field(filename):
|
||||||
|
try:
|
||||||
|
with open(filename, 'r') as file:
|
||||||
|
data = json.load(file)
|
||||||
|
outputs = []
|
||||||
|
for item in data:
|
||||||
|
text = item["instruction"]
|
||||||
|
image = item["image"]
|
||||||
|
outputs.append((text, image))
|
||||||
|
return outputs
|
||||||
|
except FileNotFoundError:
|
||||||
|
logging.error("The file was not found.")
|
||||||
|
except json.JSONDecodeError:
|
||||||
|
logging.error("There was an error decoding the JSON file.")
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"An error occurred: {e}")
|
||||||
|
|
||||||
|
|
||||||
|
def write_data_to_json_file(data, file_path):
|
||||||
|
try:
|
||||||
|
with open(file_path, 'w') as file:
|
||||||
|
json.dump(data, file, ensure_ascii=False, indent=4)
|
||||||
|
logging.info(f"Data successfully written to {file_path}")
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"An error occurred: {e}")
|
||||||
|
|
||||||
|
|
||||||
|
def generate_teacher_response_api(data_list, config):
|
||||||
|
client = OpenAI(
|
||||||
|
api_key = config["inference"]["api_key"],
|
||||||
|
base_url = config["inference"]["base_url"]
|
||||||
|
)
|
||||||
|
models = client.models.list()
|
||||||
|
model = models.data[0].id
|
||||||
|
logging.info(model)
|
||||||
|
system_prompt = config["inference"]["system_prompt"]
|
||||||
|
if system_prompt == "":
|
||||||
|
system_prompt = "You are a helpful assistant."
|
||||||
|
outcomes = []
|
||||||
|
for text, image in tqdm(data_list, desc="Call remote model and generating responses"):
|
||||||
|
messages = [
|
||||||
|
{
|
||||||
|
"role": "system",
|
||||||
|
"content": system_prompt
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": [
|
||||||
|
{
|
||||||
|
"type": "image_url",
|
||||||
|
"image_url": {
|
||||||
|
"url": image
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"type": "text",
|
||||||
|
"text": text
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
]
|
||||||
|
completion = client.chat.completions.create(
|
||||||
|
messages = messages,
|
||||||
|
model = model,
|
||||||
|
max_completion_tokens = config["inference"]["max_new_tokens"]
|
||||||
|
)
|
||||||
|
result = completion.choices[0].message.content
|
||||||
|
outcomes.append({'instruction': text, 'image': image, 'output': result})
|
||||||
|
write_data_to_json_file(outcomes, config["dataset"]["labeled_path"])
|
||||||
|
|
||||||
|
|
||||||
|
def infer_with_teacher_model(config):
|
||||||
|
logging.info('Generating distillation data from the teacher model!')
|
||||||
|
data_list = read_json_field(config["dataset"]["instruction_path"])
|
||||||
|
try:
|
||||||
|
job_type = config["job_type"]
|
||||||
|
if job_type == "mmkd_black_box_api":
|
||||||
|
generate_teacher_response_api(data_list, config)
|
||||||
|
else:
|
||||||
|
logging.error(f"Invalid job type: {job_type}")
|
||||||
|
raise ValueError(f"Invalid job type: {job_type}")
|
||||||
|
except ValueError as e:
|
||||||
|
logging.error(f"Training job terminated: {e}")
|
||||||
|
return
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--config', type=str, required=True, help='path to the json config file')
|
||||||
|
args = parser.parse_args()
|
||||||
|
config = json.load(open(args.config))
|
||||||
|
infer_with_teacher_model(config)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
105
easydistill/mmkd/train.py
Normal file
105
easydistill/mmkd/train.py
Normal file
@@ -0,0 +1,105 @@
|
|||||||
|
|
||||||
|
# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ==============================================================================
|
||||||
|
|
||||||
|
import json
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from datasets import load_dataset, Dataset
|
||||||
|
from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLProcessor
|
||||||
|
from qwen_vl_utils import process_vision_info
|
||||||
|
from trl import SFTTrainer, SFTConfig
|
||||||
|
|
||||||
|
|
||||||
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
||||||
|
|
||||||
|
|
||||||
|
def train(config):
|
||||||
|
dataset = load_dataset("json", data_files=config["dataset"]["labeled_path"])
|
||||||
|
dataset = dataset.shuffle(seed=config["dataset"]["seed"])["train"]
|
||||||
|
student_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
||||||
|
config["models"]["student"],
|
||||||
|
trust_remote_code=True
|
||||||
|
)
|
||||||
|
processor = Qwen2_5_VLProcessor.from_pretrained(config["models"]["student"])
|
||||||
|
|
||||||
|
def collate_fn(examples):
|
||||||
|
texts = []
|
||||||
|
images = []
|
||||||
|
for example in examples:
|
||||||
|
chat = [
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": [
|
||||||
|
{
|
||||||
|
"type": "image","image": example["image"]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"type": "text","text": example["instruction"]
|
||||||
|
}
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"role": "assistant",
|
||||||
|
"content": example["output"]
|
||||||
|
}
|
||||||
|
]
|
||||||
|
text = processor.apply_chat_template(chat, tokenize=False)
|
||||||
|
texts.append(text)
|
||||||
|
image, _ = process_vision_info(chat)
|
||||||
|
images.append(image)
|
||||||
|
|
||||||
|
batch = processor(text=texts, images=images, return_tensors="pt", padding=True)
|
||||||
|
labels = batch["input_ids"].clone()
|
||||||
|
labels[labels == processor.tokenizer.pad_token_id] = -100
|
||||||
|
|
||||||
|
if isinstance(processor, Qwen2_5_VLProcessor):
|
||||||
|
image_tokens = [151652, 151653, 151655]
|
||||||
|
else:
|
||||||
|
image_tokens = [processor.tokenizer.convert_tokens_to_ids(processor.image_token)]
|
||||||
|
|
||||||
|
for image_token_id in image_tokens:
|
||||||
|
labels[labels == image_token_id] = -100
|
||||||
|
batch["labels"] = labels
|
||||||
|
return batch
|
||||||
|
|
||||||
|
training_arguments = SFTConfig(**config["training"])
|
||||||
|
training_arguments.gradient_checkpointing_kwargs = dict(use_reentrant=False)
|
||||||
|
training_arguments.remove_unused_columns = False
|
||||||
|
training_arguments.dataset_kwargs = {"skip_prepare_dataset": True}
|
||||||
|
|
||||||
|
trainer = SFTTrainer(
|
||||||
|
model=student_model,
|
||||||
|
data_collator=collate_fn,
|
||||||
|
processing_class=processor.tokenizer,
|
||||||
|
args=training_arguments,
|
||||||
|
train_dataset=dataset
|
||||||
|
)
|
||||||
|
|
||||||
|
trainer.train()
|
||||||
|
trainer.save_model(config["training"]["output_dir"])
|
||||||
|
processor.tokenizer.save_pretrained(config["training"]["output_dir"])
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--config', type=str, required=True, help='path to the json config file')
|
||||||
|
args = parser.parse_args()
|
||||||
|
config = json.load(open(args.config))
|
||||||
|
train(config)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
Reference in New Issue
Block a user