feat: add mmkd
This commit is contained in:
122
easydistill/mmkd/infer.py
Normal file
122
easydistill/mmkd/infer.py
Normal file
@@ -0,0 +1,122 @@
|
||||
|
||||
# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
|
||||
import json
|
||||
import argparse
|
||||
import logging
|
||||
from tqdm import tqdm
|
||||
from openai import OpenAI
|
||||
|
||||
|
||||
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
||||
|
||||
|
||||
def read_json_field(filename):
|
||||
try:
|
||||
with open(filename, 'r') as file:
|
||||
data = json.load(file)
|
||||
outputs = []
|
||||
for item in data:
|
||||
text = item["instruction"]
|
||||
image = item["image"]
|
||||
outputs.append((text, image))
|
||||
return outputs
|
||||
except FileNotFoundError:
|
||||
logging.error("The file was not found.")
|
||||
except json.JSONDecodeError:
|
||||
logging.error("There was an error decoding the JSON file.")
|
||||
except Exception as e:
|
||||
logging.error(f"An error occurred: {e}")
|
||||
|
||||
|
||||
def write_data_to_json_file(data, file_path):
|
||||
try:
|
||||
with open(file_path, 'w') as file:
|
||||
json.dump(data, file, ensure_ascii=False, indent=4)
|
||||
logging.info(f"Data successfully written to {file_path}")
|
||||
except Exception as e:
|
||||
logging.error(f"An error occurred: {e}")
|
||||
|
||||
|
||||
def generate_teacher_response_api(data_list, config):
|
||||
client = OpenAI(
|
||||
api_key = config["inference"]["api_key"],
|
||||
base_url = config["inference"]["base_url"]
|
||||
)
|
||||
models = client.models.list()
|
||||
model = models.data[0].id
|
||||
logging.info(model)
|
||||
system_prompt = config["inference"]["system_prompt"]
|
||||
if system_prompt == "":
|
||||
system_prompt = "You are a helpful assistant."
|
||||
outcomes = []
|
||||
for text, image in tqdm(data_list, desc="Call remote model and generating responses"):
|
||||
messages = [
|
||||
{
|
||||
"role": "system",
|
||||
"content": system_prompt
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": image
|
||||
},
|
||||
},
|
||||
{
|
||||
"type": "text",
|
||||
"text": text
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
completion = client.chat.completions.create(
|
||||
messages = messages,
|
||||
model = model,
|
||||
max_completion_tokens = config["inference"]["max_new_tokens"]
|
||||
)
|
||||
result = completion.choices[0].message.content
|
||||
outcomes.append({'instruction': text, 'image': image, 'output': result})
|
||||
write_data_to_json_file(outcomes, config["dataset"]["labeled_path"])
|
||||
|
||||
|
||||
def infer_with_teacher_model(config):
|
||||
logging.info('Generating distillation data from the teacher model!')
|
||||
data_list = read_json_field(config["dataset"]["instruction_path"])
|
||||
try:
|
||||
job_type = config["job_type"]
|
||||
if job_type == "mmkd_black_box_api":
|
||||
generate_teacher_response_api(data_list, config)
|
||||
else:
|
||||
logging.error(f"Invalid job type: {job_type}")
|
||||
raise ValueError(f"Invalid job type: {job_type}")
|
||||
except ValueError as e:
|
||||
logging.error(f"Training job terminated: {e}")
|
||||
return
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--config', type=str, required=True, help='path to the json config file')
|
||||
args = parser.parse_args()
|
||||
config = json.load(open(args.config))
|
||||
infer_with_teacher_model(config)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
105
easydistill/mmkd/train.py
Normal file
105
easydistill/mmkd/train.py
Normal file
@@ -0,0 +1,105 @@
|
||||
|
||||
# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
|
||||
import json
|
||||
import argparse
|
||||
import logging
|
||||
from datasets import load_dataset, Dataset
|
||||
from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLProcessor
|
||||
from qwen_vl_utils import process_vision_info
|
||||
from trl import SFTTrainer, SFTConfig
|
||||
|
||||
|
||||
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
||||
|
||||
|
||||
def train(config):
|
||||
dataset = load_dataset("json", data_files=config["dataset"]["labeled_path"])
|
||||
dataset = dataset.shuffle(seed=config["dataset"]["seed"])["train"]
|
||||
student_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
||||
config["models"]["student"],
|
||||
trust_remote_code=True
|
||||
)
|
||||
processor = Qwen2_5_VLProcessor.from_pretrained(config["models"]["student"])
|
||||
|
||||
def collate_fn(examples):
|
||||
texts = []
|
||||
images = []
|
||||
for example in examples:
|
||||
chat = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image","image": example["image"]
|
||||
},
|
||||
{
|
||||
"type": "text","text": example["instruction"]
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": example["output"]
|
||||
}
|
||||
]
|
||||
text = processor.apply_chat_template(chat, tokenize=False)
|
||||
texts.append(text)
|
||||
image, _ = process_vision_info(chat)
|
||||
images.append(image)
|
||||
|
||||
batch = processor(text=texts, images=images, return_tensors="pt", padding=True)
|
||||
labels = batch["input_ids"].clone()
|
||||
labels[labels == processor.tokenizer.pad_token_id] = -100
|
||||
|
||||
if isinstance(processor, Qwen2_5_VLProcessor):
|
||||
image_tokens = [151652, 151653, 151655]
|
||||
else:
|
||||
image_tokens = [processor.tokenizer.convert_tokens_to_ids(processor.image_token)]
|
||||
|
||||
for image_token_id in image_tokens:
|
||||
labels[labels == image_token_id] = -100
|
||||
batch["labels"] = labels
|
||||
return batch
|
||||
|
||||
training_arguments = SFTConfig(**config["training"])
|
||||
training_arguments.gradient_checkpointing_kwargs = dict(use_reentrant=False)
|
||||
training_arguments.remove_unused_columns = False
|
||||
training_arguments.dataset_kwargs = {"skip_prepare_dataset": True}
|
||||
|
||||
trainer = SFTTrainer(
|
||||
model=student_model,
|
||||
data_collator=collate_fn,
|
||||
processing_class=processor.tokenizer,
|
||||
args=training_arguments,
|
||||
train_dataset=dataset
|
||||
)
|
||||
|
||||
trainer.train()
|
||||
trainer.save_model(config["training"]["output_dir"])
|
||||
processor.tokenizer.save_pretrained(config["training"]["output_dir"])
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--config', type=str, required=True, help='path to the json config file')
|
||||
args = parser.parse_args()
|
||||
config = json.load(open(args.config))
|
||||
train(config)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Reference in New Issue
Block a user