training with hybrid loss from teacher and from sft
This commit is contained in:
400
easydistill/mmkd/train_lora_2_hybrid_loss.py
Normal file
400
easydistill/mmkd/train_lora_2_hybrid_loss.py
Normal file
@@ -0,0 +1,400 @@
|
|||||||
|
# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ==============================================================================
|
||||||
|
|
||||||
|
import json
|
||||||
|
import torch
|
||||||
|
import numpy as np
|
||||||
|
import jsonlines
|
||||||
|
import torch.nn.functional as F
|
||||||
|
import os
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from datasets import load_dataset, Dataset
|
||||||
|
from typing import Optional, Dict, Union, List
|
||||||
|
from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLProcessor
|
||||||
|
from transformers import (
|
||||||
|
PreTrainedModel,
|
||||||
|
PreTrainedTokenizerBase,
|
||||||
|
AutoModelForCausalLM,
|
||||||
|
AutoTokenizer,
|
||||||
|
TrainingArguments,
|
||||||
|
AutoConfig
|
||||||
|
)
|
||||||
|
from qwen_vl_utils import process_vision_info
|
||||||
|
from trl import SFTTrainer, SFTConfig
|
||||||
|
from peft import LoraConfig
|
||||||
|
|
||||||
|
logging.basicConfig(
|
||||||
|
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
from torch.utils.data import Dataset
|
||||||
|
from PIL import Image
|
||||||
|
import os
|
||||||
|
|
||||||
|
|
||||||
|
class MMDataset(Dataset):
|
||||||
|
def __init__(self, data):
|
||||||
|
self.data = data
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.data)
|
||||||
|
|
||||||
|
def __getitem__(self, idx):
|
||||||
|
return self.data[int(idx)]
|
||||||
|
|
||||||
|
|
||||||
|
class DistillSFTTrainer(SFTTrainer):
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
logits_dir: str = None,
|
||||||
|
teacher_vocab_size=None,
|
||||||
|
kd_ratio: float = 0.5,
|
||||||
|
max_seq_length: int = 1024,
|
||||||
|
distillation_type: str = "forward_kld",
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
|
super().__init__(**kwargs)
|
||||||
|
self.logits_dir = logits_dir
|
||||||
|
self.teacher_vocab_size = teacher_vocab_size
|
||||||
|
self.kd_ratio = kd_ratio
|
||||||
|
self.max_seq_length = max_seq_length
|
||||||
|
self.distillation_type = distillation_type
|
||||||
|
|
||||||
|
def _load_teacher_logits(
|
||||||
|
self,
|
||||||
|
batch_size: int,
|
||||||
|
it: int,
|
||||||
|
dp_rank: int,
|
||||||
|
device: torch.device,
|
||||||
|
no_model_batch: Dict,
|
||||||
|
):
|
||||||
|
start_idx = dp_rank * batch_size + batch_size * it
|
||||||
|
end_idx = dp_rank * batch_size + batch_size * (it + 1)
|
||||||
|
|
||||||
|
loaded_data = []
|
||||||
|
# Open file and read only the specific lines needed for the current batch
|
||||||
|
with jsonlines.open(self.logits_dir) as reader:
|
||||||
|
for i, obj in enumerate(reader):
|
||||||
|
if i >= start_idx and i < end_idx:
|
||||||
|
loaded_data.append(obj)
|
||||||
|
elif i >= end_idx:
|
||||||
|
break
|
||||||
|
|
||||||
|
arr = np.zeros((batch_size, self.max_seq_length, self.teacher_vocab_size))
|
||||||
|
for i in range(len(loaded_data)):
|
||||||
|
for j in range(len(loaded_data[i])):
|
||||||
|
keys = np.array(list(loaded_data[i][j].keys()), dtype=int)
|
||||||
|
values = np.array(list(loaded_data[i][j].values()))
|
||||||
|
arr[i, j, keys] = values
|
||||||
|
|
||||||
|
logits_tensor = torch.tensor(arr, dtype=torch.bfloat16, device=device)
|
||||||
|
return self._shift_tensor_right(
|
||||||
|
logits_tensor, no_model_batch["label"], pad_value=0
|
||||||
|
)
|
||||||
|
|
||||||
|
def _compute_white_box_distillation_loss(
|
||||||
|
self,
|
||||||
|
student_logits: torch.Tensor,
|
||||||
|
teacher_logits: torch.Tensor,
|
||||||
|
labels: Optional[torch.Tensor],
|
||||||
|
):
|
||||||
|
student_logits = student_logits[:, : self.max_seq_length, :]
|
||||||
|
teacher_probs = teacher_logits[
|
||||||
|
:, : student_logits.size(1), : student_logits.size(-1)
|
||||||
|
]
|
||||||
|
mask = (
|
||||||
|
(labels != -100).float()
|
||||||
|
if labels is not None
|
||||||
|
else torch.ones_like(student_logits[:, :, 0])
|
||||||
|
)
|
||||||
|
|
||||||
|
mask = mask[:, : self.max_seq_length]
|
||||||
|
|
||||||
|
if self.distillation_type == "forward_kld":
|
||||||
|
# Forward KLD: student learns from teacher (original implementation)
|
||||||
|
loss = F.kl_div(
|
||||||
|
F.log_softmax(student_logits, dim=-1),
|
||||||
|
teacher_probs,
|
||||||
|
reduction="none",
|
||||||
|
log_target=False,
|
||||||
|
).sum(dim=-1) / torch.sum(mask.view(-1), dim=0)
|
||||||
|
elif self.distillation_type == "reverse_kld":
|
||||||
|
# Reverse KLD: teacher provides certainty to student
|
||||||
|
loss = F.kl_div(
|
||||||
|
torch.log(teacher_probs.clamp(min=1e-10)), # avoid log(0)
|
||||||
|
F.softmax(student_logits, dim=-1),
|
||||||
|
reduction="none",
|
||||||
|
log_target=False,
|
||||||
|
).sum(dim=-1) / torch.sum(mask.view(-1), dim=0)
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
f"Unsupported distillation type: {self.distillation_type}. Use 'forward_kld' or 'reverse_kld'"
|
||||||
|
)
|
||||||
|
|
||||||
|
return (loss * mask).sum() / mask.sum()
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _shift_tensor_right(
|
||||||
|
inputs: torch.Tensor, labels: torch.Tensor, pad_value: float = 0.0
|
||||||
|
):
|
||||||
|
batch_size, seqlen, vocab_size = inputs.shape
|
||||||
|
device = inputs.device
|
||||||
|
labels_ne = labels != -100
|
||||||
|
shift_distances = torch.argmax(labels_ne.int(), dim=1)
|
||||||
|
idx = (
|
||||||
|
torch.arange(seqlen, device=device).unsqueeze(0).expand(batch_size, seqlen)
|
||||||
|
)
|
||||||
|
shifted_idx = idx - shift_distances.unsqueeze(1)
|
||||||
|
mask = shifted_idx >= 0
|
||||||
|
shifted_idx = shifted_idx.clamp(min=0)
|
||||||
|
inputs_flat = inputs.view(batch_size, seqlen, vocab_size)
|
||||||
|
shifted_idx = shifted_idx.unsqueeze(2).expand(-1, -1, vocab_size)
|
||||||
|
gathered = torch.gather(inputs_flat, 1, shifted_idx)
|
||||||
|
mask = mask.unsqueeze(2).expand(-1, -1, vocab_size)
|
||||||
|
return torch.where(mask, gathered, torch.full_like(gathered, pad_value))
|
||||||
|
|
||||||
|
def compute_loss(
|
||||||
|
self,
|
||||||
|
model: PreTrainedModel,
|
||||||
|
inputs: Dict[str, torch.Tensor],
|
||||||
|
return_outputs=False,
|
||||||
|
num_items_in_batch=None,
|
||||||
|
):
|
||||||
|
label_sources = inputs.pop("label_sources")
|
||||||
|
labels = inputs.get("labels")
|
||||||
|
|
||||||
|
outputs = model(**inputs)
|
||||||
|
# lm_loss = outputs.loss
|
||||||
|
|
||||||
|
if self.logits_dir:
|
||||||
|
teacher_logits = self._load_teacher_logits(
|
||||||
|
batch_size=inputs["input_ids"].size(0),
|
||||||
|
it=self.state.global_step,
|
||||||
|
dp_rank=(
|
||||||
|
torch.distributed.get_rank()
|
||||||
|
if torch.distributed.is_initialized()
|
||||||
|
else 0
|
||||||
|
),
|
||||||
|
device=model.device,
|
||||||
|
no_model_batch={"label": inputs.get("labels", None)},
|
||||||
|
)
|
||||||
|
|
||||||
|
student_logits = outputs.logits
|
||||||
|
|
||||||
|
# ===== Calculate the two types of losses for the entire batch
|
||||||
|
sft_lossn_fn = torch.nn.CrossEntropyLoss(reduction="none")
|
||||||
|
# Reshape logits and labels for loss computation
|
||||||
|
vocab_size = student_logits.size(-1)
|
||||||
|
|
||||||
|
# SFT Loss (vs. hard labels)
|
||||||
|
sft_loss_per_token = sft_lossn_fn(
|
||||||
|
student_logits.view(-1, vocab_size),
|
||||||
|
labels.view(-1)
|
||||||
|
).view(student_logits.size(0), -1)
|
||||||
|
|
||||||
|
# Conditional logic sample by sample
|
||||||
|
total_loss = []
|
||||||
|
for i in range(student_logits.size(0)):
|
||||||
|
# create mask to only consider the actual response tokens for this sample
|
||||||
|
sample_mask = (labels[i] != -100).float()
|
||||||
|
num_tokens = sample_mask.sum()
|
||||||
|
|
||||||
|
if num_tokens == 0: continue
|
||||||
|
|
||||||
|
# Calculate the average SFT loss for this sample
|
||||||
|
sample_sft_loss = (sft_loss_per_token[i] * sample_mask).sum() / num_tokens
|
||||||
|
|
||||||
|
# Calculate the distillation loss for this sample
|
||||||
|
sample_distil_loss = self._compute_white_box_distillation_loss(
|
||||||
|
student_logits=student_logits[i].unsqueeze(0),
|
||||||
|
teacher_logits=teacher_logits[i].unsqueeze(0),
|
||||||
|
labels=labels[i].unsqueeze(0),
|
||||||
|
)
|
||||||
|
|
||||||
|
if label_sources[i] == "human":
|
||||||
|
# for human-labeled data, use a high SFT ratio
|
||||||
|
ratio = 0.7
|
||||||
|
sample_loss = (ratio * sample_sft_loss) + \
|
||||||
|
((1 - ratio) * sample_distil_loss)
|
||||||
|
else: # only teacher loss
|
||||||
|
# for pseudo-labeled data, use only the distillation loss
|
||||||
|
sample_loss = sample_distil_loss
|
||||||
|
|
||||||
|
total_loss.append(sample_loss)
|
||||||
|
|
||||||
|
# Average the loss across the batch
|
||||||
|
final_loss = torch.stack(total_loss).mean()
|
||||||
|
else:
|
||||||
|
# Fallback to standard SFT if no logits are provided
|
||||||
|
final_loss = outputs.loss
|
||||||
|
|
||||||
|
return (final_loss, outputs) if return_outputs else final_loss
|
||||||
|
|
||||||
|
|
||||||
|
def train(config):
|
||||||
|
raw_data = []
|
||||||
|
with jsonlines.open(config["dataset"]["labeled_path"]) as reader:
|
||||||
|
for obj in reader:
|
||||||
|
raw_data.append(obj)
|
||||||
|
|
||||||
|
dataset = MMDataset(raw_data)
|
||||||
|
student_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
||||||
|
config["models"]["student"],
|
||||||
|
torch_dtype=torch.bfloat16,
|
||||||
|
attn_implementation="flash_attention_2",
|
||||||
|
trust_remote_code=True,
|
||||||
|
device_map="auto",
|
||||||
|
)
|
||||||
|
processor = Qwen2_5_VLProcessor.from_pretrained(config["models"]["student"])
|
||||||
|
|
||||||
|
# Creating LoRA configuration
|
||||||
|
lora_config = LoraConfig(
|
||||||
|
r=16, # Rank of the LoRA layers
|
||||||
|
lora_alpha=32, # Scaling factor for the LoRA layers
|
||||||
|
lora_dropout=0.1, # Dropout rate for the LoRA layers
|
||||||
|
bias="none", # No bias in LoRA layers
|
||||||
|
task_type="CAUSAL_LM", # Task type for the LoRA layers
|
||||||
|
target_modules=["q_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "o_proj"], # Target modules for LoRA
|
||||||
|
)
|
||||||
|
|
||||||
|
training_arguments = SFTConfig(**config["training"])
|
||||||
|
training_arguments.gradient_checkpointing_kwargs = dict(use_reentrant=False)
|
||||||
|
training_arguments.remove_unused_columns = False
|
||||||
|
training_arguments.dataset_kwargs = {"skip_prepare_dataset": True}
|
||||||
|
|
||||||
|
def collate_fn(examples):
|
||||||
|
texts = []
|
||||||
|
images = []
|
||||||
|
label_sources = []
|
||||||
|
|
||||||
|
for example in examples:
|
||||||
|
|
||||||
|
is_human_labeled = any(msg.get("role") == "assistant_gt" for msg in example)
|
||||||
|
label_sources.append("human" if is_human_labeled else "teacher")
|
||||||
|
|
||||||
|
chat = example
|
||||||
|
text = processor.apply_chat_template(chat, tokenize=False, add_generation_prompt=False)
|
||||||
|
texts.append(text)
|
||||||
|
|
||||||
|
image, _ = process_vision_info(example)
|
||||||
|
images.append(image)
|
||||||
|
|
||||||
|
batch = processor(text=texts, images=images, return_tensors="pt", padding=True)
|
||||||
|
|
||||||
|
# Prepare labels tensor with masking for multi-turn conversations
|
||||||
|
labels = batch["input_ids"].clone()
|
||||||
|
|
||||||
|
for i, example in enumerate(examples):
|
||||||
|
# Tokenize each turn individually to find the positions of assistant responses
|
||||||
|
prompt_turns = [msg for msg in example if msg.get("role") not in ["assistant", "assistant_gt"]]
|
||||||
|
|
||||||
|
prompt_text = processor.apply_chat_template(prompt_turns, tokenize=False, add_generation_prompt=False)
|
||||||
|
prompt_ids = processor.tokenizer(prompt_text, add_special_tokens=False)['input_ids']
|
||||||
|
|
||||||
|
response_template = "\n<|im_start|>assistant\n"
|
||||||
|
response_template_ids = processor.tokenizer.encode(response_template, add_special_tokens=False)
|
||||||
|
|
||||||
|
# Mask all tokens that are part of the prompt
|
||||||
|
current_labels = labels[i]
|
||||||
|
prompt_len = len(prompt_ids) # A good approximation of where the first response starts
|
||||||
|
|
||||||
|
# Rebuild the labels tensor from scratch.
|
||||||
|
new_labels = torch.full_like(batch["input_ids"][i], -100)
|
||||||
|
|
||||||
|
# Tokenize turn-by-turn and only keep assistant parts
|
||||||
|
full_text_tokenized = processor.tokenizer(texts[i], add_special_tokens=False)['input_ids']
|
||||||
|
|
||||||
|
current_pos = 0
|
||||||
|
for turn in example:
|
||||||
|
# Tokenize the turn text
|
||||||
|
turn_text = processor.apply_chat_template([turn], tokenize=False, add_generation_prompt=False)
|
||||||
|
turn_token_ids = processor.tokenizer(turn_text, add_special_tokens=False)["input_ids"]
|
||||||
|
|
||||||
|
turn_len = len(turn_token_ids)
|
||||||
|
|
||||||
|
if turn.get("role") in ["assistant", "assistant_gt"]:
|
||||||
|
end_pos = min(current_pos + turn_len, new_labels.shape[0])
|
||||||
|
# Copy the labels for this assistant turn
|
||||||
|
new_labels[current_pos:end_pos] = batch["input_ids"][i, current_pos:end_pos]
|
||||||
|
|
||||||
|
current_pos += turn_len
|
||||||
|
|
||||||
|
labels[i] = new_labels
|
||||||
|
|
||||||
|
batch["labels"] = labels
|
||||||
|
batch["label_sources"] = label_sources
|
||||||
|
return batch
|
||||||
|
|
||||||
|
try:
|
||||||
|
job_type = config["job_type"]
|
||||||
|
if "mmkd_black_box" in job_type:
|
||||||
|
|
||||||
|
trainer = SFTTrainer(
|
||||||
|
model=student_model,
|
||||||
|
data_collator=collate_fn,
|
||||||
|
# tokenizer=processor.tokenizer,
|
||||||
|
args=training_arguments,
|
||||||
|
train_dataset=dataset,
|
||||||
|
peft_config=lora_config,
|
||||||
|
)
|
||||||
|
elif "mmkd_white_box" in job_type:
|
||||||
|
teacher_config = AutoConfig.from_pretrained(
|
||||||
|
config["models"]["teacher"],
|
||||||
|
trust_remote_code=True
|
||||||
|
)
|
||||||
|
teacher_vocab_size = teacher_config.vocab_size
|
||||||
|
|
||||||
|
trainer = DistillSFTTrainer(
|
||||||
|
logits_dir=config["dataset"]["logits_path"],
|
||||||
|
data_collator=collate_fn,
|
||||||
|
teacher_vocab_size=teacher_vocab_size,
|
||||||
|
kd_ratio=config["distillation"]["kd_ratio"],
|
||||||
|
max_seq_length=config["distillation"]["max_seq_length"],
|
||||||
|
distillation_type=config["distillation"].get(
|
||||||
|
"distillation_type", "forward_kld"
|
||||||
|
),
|
||||||
|
model=student_model,
|
||||||
|
peft_config=lora_config,
|
||||||
|
# tokenizer=processor.tokenizer,
|
||||||
|
args=training_arguments,
|
||||||
|
train_dataset=dataset,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.error(f"Invalid job type: {job_type}")
|
||||||
|
raise ValueError(f"Invalid job type: {job_type}")
|
||||||
|
except ValueError as e:
|
||||||
|
logging.error(f"Training job terminated: {e}")
|
||||||
|
return
|
||||||
|
|
||||||
|
trainer.train()
|
||||||
|
trainer.save_model(config["training"]["output_dir"])
|
||||||
|
processor.tokenizer.save_pretrained(config["training"]["output_dir"])
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--config", type=str, required=True, help="path to the json config file"
|
||||||
|
)
|
||||||
|
args = parser.parse_args()
|
||||||
|
config = json.load(open(args.config))
|
||||||
|
train(config)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
Reference in New Issue
Block a user