add mmkd, white mmkd
This commit is contained in:
@@ -14,11 +14,16 @@
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
|
||||
import json
|
||||
import json, jsonlines
|
||||
import math
|
||||
import argparse
|
||||
import logging
|
||||
from tqdm import tqdm
|
||||
from openai import OpenAI
|
||||
import torch
|
||||
from transformers import AutoProcessor, AutoTokenizer
|
||||
from vllm import LLM, SamplingParams
|
||||
from qwen_vl_utils import process_vision_info
|
||||
|
||||
|
||||
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
||||
@@ -28,12 +33,7 @@ def read_json_field(filename):
|
||||
try:
|
||||
with open(filename, 'r') as file:
|
||||
data = json.load(file)
|
||||
outputs = []
|
||||
for item in data:
|
||||
text = item["instruction"]
|
||||
image = item["image"]
|
||||
outputs.append((text, image))
|
||||
return outputs
|
||||
return data
|
||||
except FileNotFoundError:
|
||||
logging.error("The file was not found.")
|
||||
except json.JSONDecodeError:
|
||||
@@ -50,6 +50,170 @@ def write_data_to_json_file(data, file_path):
|
||||
except Exception as e:
|
||||
logging.error(f"An error occurred: {e}")
|
||||
|
||||
def load_tokenizer_and_vllm(config, eos_token=None):
|
||||
|
||||
model_path = config["models"]["teacher"]
|
||||
logging.info(f"Loading processor & vLLM model from {model_path}")
|
||||
|
||||
# 1. 统一用 AutoProcessor(已整合 tokenizer + image_processor + video_processor)
|
||||
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
# 2. eos / pad token 处理(与官方示例保持一致,不再显式改 pad_token)
|
||||
if eos_token:
|
||||
eos_token_id = processor.tokenizer.convert_tokens_to_ids(eos_token)
|
||||
logging.info(f"eos_token {eos_token} from user input")
|
||||
elif hasattr(processor.tokenizer, "eos_token_id") and processor.tokenizer.eos_token_id is not None:
|
||||
eos_token_id = processor.tokenizer.eos_token_id
|
||||
eos_token = processor.tokenizer.convert_ids_to_tokens(eos_token_id)
|
||||
logging.info(f"Initial eos_token_id {eos_token_id} from tokenizer")
|
||||
else:
|
||||
raise ValueError("No available eos_token or eos_token_id.")
|
||||
|
||||
# 3. 设置 tokenizer 的 eos 相关字段(pad_token 保持 None,由 vLLM 自动处理)
|
||||
try:
|
||||
processor.tokenizer.eos_token = eos_token
|
||||
processor.tokenizer.eos_token_id = eos_token_id
|
||||
except Exception as e:
|
||||
logging.warning(f"[WARNING] Cannot set eos_token: {e}")
|
||||
|
||||
logging.info(
|
||||
f"processor.tokenizer eos_token: {processor.tokenizer.eos_token}, "
|
||||
f"eos_token_id: {processor.tokenizer.eos_token_id}"
|
||||
)
|
||||
|
||||
num_gpus = torch.cuda.device_count()
|
||||
llm = LLM(
|
||||
model=model_path,
|
||||
tensor_parallel_size=num_gpus,
|
||||
trust_remote_code=True,
|
||||
limit_mm_per_prompt={"image": 10, "video": 10}, # 可按需调整
|
||||
# 其余超参沿用原 config
|
||||
gpu_memory_utilization=config["inference"].get("gpu_memory_utilization", 0.9),
|
||||
max_model_len=config["inference"].get("max_model_len", 4096),
|
||||
enforce_eager=config["inference"].get("enforce_eager", False),
|
||||
)
|
||||
|
||||
logging.info("Qwen2.5-VL vLLM model loaded successfully")
|
||||
#return processor, llm
|
||||
|
||||
return processor, llm
|
||||
|
||||
def generate_teacher_response_batch(processor, llm, data_list, config, batch_size=32):
|
||||
|
||||
outcomes = []
|
||||
sampling_params = SamplingParams(
|
||||
n = 1,
|
||||
top_k = 1,
|
||||
temperature=config["inference"]["temperature"],
|
||||
seed = config["inference"]["seed"],
|
||||
max_tokens = config["inference"]["max_new_tokens"],
|
||||
)
|
||||
batches = [data_list[i:i + batch_size] for i in range(0, len(data_list), batch_size)]
|
||||
for batch in tqdm(batches, desc="Generating responses"):
|
||||
new_batch = []
|
||||
batch_outcomes = []
|
||||
for sample in batch:
|
||||
batch_outcomes.append(sample)
|
||||
prompt = processor.apply_chat_template(
|
||||
sample,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True,
|
||||
)
|
||||
image_inputs, video_inputs = process_vision_info(sample)
|
||||
|
||||
mm_data = {}
|
||||
if image_inputs is not None:
|
||||
mm_data["image"] = image_inputs
|
||||
|
||||
sample_inputs = {
|
||||
"prompt": prompt,
|
||||
"multi_modal_data": mm_data,
|
||||
}
|
||||
new_batch.append(sample_inputs)
|
||||
outputs = llm.generate(new_batch, sampling_params=sampling_params)
|
||||
for b in range(len(batch_outcomes)):
|
||||
|
||||
generated_text = outputs[b].outputs[0].text
|
||||
out={
|
||||
"role": "assistant",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": generated_text,
|
||||
}
|
||||
],
|
||||
}
|
||||
batch_outcomes[b].append(out)
|
||||
outcomes.extend(batch_outcomes)
|
||||
write_data_to_json_file(outcomes, config["dataset"]["labeled_path"])
|
||||
|
||||
def generate_teacher_logits_batch(processor, llm, data_list, config, batch_size=32):
|
||||
|
||||
outcomes = []
|
||||
sampling_params = SamplingParams(
|
||||
n = 1,
|
||||
top_k = 1,
|
||||
temperature=config["inference"]["temperature"],
|
||||
seed = config["inference"]["seed"],
|
||||
skip_special_tokens=False,
|
||||
max_tokens = config["inference"]["max_new_tokens"],
|
||||
logprobs=config["inference"]["top_logits_num"],
|
||||
)
|
||||
batches = [data_list[i:i + batch_size] for i in range(0, len(data_list), batch_size)]
|
||||
logits=[]
|
||||
for batch in tqdm(batches, desc="Generating responses"):
|
||||
new_batch = []
|
||||
batch_outcomes = []
|
||||
for sample in batch:
|
||||
batch_outcomes.append(sample)
|
||||
prompt = processor.apply_chat_template(
|
||||
sample,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True,
|
||||
)
|
||||
image_inputs, video_inputs = process_vision_info(sample)
|
||||
|
||||
mm_data = {}
|
||||
if image_inputs is not None:
|
||||
mm_data["image"] = image_inputs
|
||||
|
||||
sample_inputs = {
|
||||
"prompt": prompt,
|
||||
"multi_modal_data": mm_data,
|
||||
}
|
||||
new_batch.append(sample_inputs)
|
||||
outputs = llm.generate(new_batch, sampling_params=sampling_params)
|
||||
logits+=[output.outputs[0].logprobs for output in outputs]
|
||||
|
||||
for b in range(len(batch_outcomes)):
|
||||
|
||||
generated_text = outputs[b].outputs[0].text
|
||||
out={
|
||||
"role": "assistant",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": generated_text,
|
||||
}
|
||||
],
|
||||
}
|
||||
batch_outcomes[b].append(out)
|
||||
outcomes.extend(batch_outcomes)
|
||||
|
||||
for logit in logits:
|
||||
for pos in logit:
|
||||
for k,v in pos.items():
|
||||
pos[k]=math.exp(v.logprob)
|
||||
|
||||
with jsonlines.open(config["dataset"]["logits_path"], mode='a') as writer:
|
||||
for row in logits:
|
||||
#for item in row:
|
||||
writer.write(row)
|
||||
|
||||
write_data_to_json_file(outcomes, config["dataset"]["labeled_path"])
|
||||
|
||||
|
||||
|
||||
|
||||
def generate_teacher_response_api(data_list, config):
|
||||
client = OpenAI(
|
||||
@@ -98,10 +262,18 @@ def generate_teacher_response_api(data_list, config):
|
||||
def infer_with_teacher_model(config):
|
||||
logging.info('Generating distillation data from the teacher model!')
|
||||
data_list = read_json_field(config["dataset"]["instruction_path"])
|
||||
|
||||
try:
|
||||
job_type = config["job_type"]
|
||||
if job_type == "mmkd_black_box_api":
|
||||
generate_teacher_response_api(data_list, config)
|
||||
elif job_type == "mmkd_black_box_local":
|
||||
tokenizer, llm = load_tokenizer_and_vllm(config)
|
||||
generate_teacher_response_batch(tokenizer, llm, data_list, config)
|
||||
elif job_type == "mmkd_white_box":
|
||||
|
||||
tokenizer, llm = load_tokenizer_and_vllm(config)
|
||||
generate_teacher_logits_batch(tokenizer, llm, data_list, config)
|
||||
else:
|
||||
logging.error(f"Invalid job type: {job_type}")
|
||||
raise ValueError(f"Invalid job type: {job_type}")
|
||||
|
Reference in New Issue
Block a user