init commit
This commit is contained in:
122
easydistill/rl/ppo_train.py
Normal file
122
easydistill/rl/ppo_train.py
Normal file
@@ -0,0 +1,122 @@
|
||||
|
||||
# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
|
||||
import json
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
import random
|
||||
from jinja2 import Environment, BaseLoader, FileSystemLoader
|
||||
from datasets import load_dataset, Dataset
|
||||
from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer
|
||||
from trl import PPOConfig, PPOTrainer
|
||||
|
||||
|
||||
def process_dataset(dataset_path, dataset_seed, env, template, tokenizer, train_ratio):
|
||||
examples = []
|
||||
try:
|
||||
with open(dataset_path, 'r') as file:
|
||||
examples = json.load(file)
|
||||
except FileNotFoundError:
|
||||
print(f"Error: The file '{dataset_path}' was not found.")
|
||||
except json.JSONDecodeError:
|
||||
print(f"Error: The file '{dataset_path}' is not a valid JSON file.")
|
||||
except Exception as e:
|
||||
print(f"An unexpected error occurred: {e}")
|
||||
|
||||
output_dataset = []
|
||||
# use chat template
|
||||
for i in range(len(examples)):
|
||||
try:
|
||||
message = {"content": examples[i]["instruction"]}
|
||||
rendered = template.render(message=message, add_generation_prompt=True, add_output=False)
|
||||
tokens = tokenizer.encode(rendered)
|
||||
sample = {"input_ids": tokens}
|
||||
output_dataset.append(sample)
|
||||
except:
|
||||
logging.warning(f"Error processing sample.")
|
||||
|
||||
random.shuffle(output_dataset)
|
||||
random.seed(dataset_seed)
|
||||
split_index = int(len(output_dataset) * train_ratio)
|
||||
train_list = output_dataset[:split_index]
|
||||
eval_list = output_dataset[split_index:]
|
||||
|
||||
return Dataset.from_list(train_list), Dataset.from_list(eval_list)
|
||||
|
||||
|
||||
def train(config):
|
||||
dataset_path = config["dataset"]["instruction_path"]
|
||||
dataset_seed = config["dataset"]["seed"]
|
||||
train_ratio = config["dataset"]["train_ratio"]
|
||||
|
||||
full_path = config["dataset"]["template"]
|
||||
template_dir = os.path.dirname(full_path)
|
||||
template_file = os.path.basename(full_path)
|
||||
env = Environment(loader=FileSystemLoader(template_dir))
|
||||
template = env.get_template(template_file)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
config["models"]["student"],
|
||||
trust_remote_code=True
|
||||
)
|
||||
train_dataset, eval_dataset = process_dataset(dataset_path, dataset_seed, env, template, tokenizer, train_ratio)
|
||||
assert train_dataset[0]["input_ids"][-1] != tokenizer.eos_token_id, "The last token should not be an EOS token"
|
||||
|
||||
print(train_dataset)
|
||||
print(eval_dataset)
|
||||
|
||||
reward_model_path = config["models"]["reward"]
|
||||
sft_model_path = config["models"]["student"]
|
||||
value_model = AutoModelForSequenceClassification.from_pretrained(
|
||||
reward_model_path, trust_remote_code=True, num_labels=1
|
||||
)
|
||||
reward_model = AutoModelForSequenceClassification.from_pretrained(
|
||||
reward_model_path, trust_remote_code=True, num_labels=1
|
||||
)
|
||||
ref_policy = AutoModelForCausalLM.from_pretrained(
|
||||
sft_model_path, trust_remote_code=True
|
||||
)
|
||||
policy = AutoModelForCausalLM.from_pretrained(
|
||||
sft_model_path, trust_remote_code=True
|
||||
)
|
||||
|
||||
training_arguments = PPOConfig(**config["training"])
|
||||
trainer = PPOTrainer(
|
||||
config=training_arguments,
|
||||
processing_class=tokenizer,
|
||||
policy=policy,
|
||||
ref_policy=ref_policy,
|
||||
reward_model=reward_model,
|
||||
value_model=value_model,
|
||||
train_dataset=train_dataset,
|
||||
eval_dataset=eval_dataset
|
||||
)
|
||||
trainer.train()
|
||||
trainer.save_model(config["training"]["output_dir"])
|
||||
tokenizer.save_pretrained(config["training"]["output_dir"])
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--config', type=str, required=True, help='path to the json config file')
|
||||
args = parser.parse_args()
|
||||
config = json.load(open(args.config))
|
||||
train(config)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Reference in New Issue
Block a user