init commit
This commit is contained in:
218
easydistill/kd/train.py
Normal file
218
easydistill/kd/train.py
Normal file
@@ -0,0 +1,218 @@
|
||||
|
||||
# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
|
||||
import json
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
from jinja2 import Environment, BaseLoader, FileSystemLoader
|
||||
from datasets import load_dataset,Dataset
|
||||
from typing import Optional, Dict, Union, List
|
||||
from datasets import Dataset
|
||||
from transformers import PreTrainedModel, PreTrainedTokenizerBase,AutoModelForCausalLM, AutoTokenizer, TrainingArguments
|
||||
from trl import SFTTrainer,SFTConfig
|
||||
import torch
|
||||
import jsonlines
|
||||
import numpy as np
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class DistillSFTTrainer(SFTTrainer):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
logits_dir: str = None,
|
||||
teacher_vocab_size = None,
|
||||
kd_ratio: float = 0.5,
|
||||
max_seq_length : int = 1024,
|
||||
distillation_type: str = "forward_kld",
|
||||
**kwargs
|
||||
):
|
||||
super().__init__(**kwargs)
|
||||
self.logits_dir = logits_dir
|
||||
self.teacher_vocab_size = teacher_vocab_size
|
||||
self.kd_ratio = kd_ratio
|
||||
self.max_seq_length = max_seq_length
|
||||
self.distillation_type = distillation_type
|
||||
self.teacher_logits = []
|
||||
with jsonlines.open(self.logits_dir) as reader:
|
||||
for obj in reader:
|
||||
self.teacher_logits.append(obj)
|
||||
|
||||
|
||||
def _load_teacher_logits(self, batch_size: int, it: int, dp_rank: int, device: torch.device, no_model_batch: Dict):
|
||||
start_idx = dp_rank * batch_size + batch_size * it
|
||||
end_idx = dp_rank * batch_size + batch_size * (it + 1)
|
||||
loaded_data = self.teacher_logits[start_idx:end_idx]
|
||||
arr = np.zeros((batch_size, self.max_seq_length, self.teacher_vocab_size))
|
||||
for i in range(len(loaded_data)):
|
||||
for j in range(len(loaded_data[i])):
|
||||
keys = np.array(list(loaded_data[i][j].keys()), dtype=int)
|
||||
values = np.array(list(loaded_data[i][j].values()))
|
||||
arr[i, j, keys] = values
|
||||
|
||||
logits_tensor = torch.tensor(arr, dtype=torch.bfloat16, device=device)
|
||||
return self._shift_tensor_right(logits_tensor, no_model_batch['label'], pad_value=0)
|
||||
|
||||
|
||||
def _compute_white_box_distillation_loss(self, student_logits: torch.Tensor, teacher_logits: torch.Tensor, labels: Optional[torch.Tensor]):
|
||||
student_logits = student_logits[:, :self.max_seq_length, :]
|
||||
teacher_probs = teacher_logits[:, :student_logits.size(1), :student_logits.size(-1)]
|
||||
mask = (labels != -100).float() if labels is not None else torch.ones_like(student_logits[:, :, 0])
|
||||
|
||||
if self.distillation_type == "forward_kld":
|
||||
# Forward KLD: student learns from teacher (original implementation)
|
||||
loss = F.kl_div(
|
||||
F.log_softmax(student_logits, dim=-1),
|
||||
teacher_probs,
|
||||
reduction='none',
|
||||
log_target=False
|
||||
).sum(dim=-1)/torch.sum(mask.view(-1), dim=0)
|
||||
elif self.distillation_type == "reverse_kld":
|
||||
# Reverse KLD: teacher provides certainty to student
|
||||
loss = F.kl_div(
|
||||
torch.log(teacher_probs.clamp(min=1e-10)), # avoid log(0)
|
||||
F.softmax(student_logits, dim=-1),
|
||||
reduction='none',
|
||||
log_target=False
|
||||
).sum(dim=-1)/torch.sum(mask.view(-1), dim=0)
|
||||
else:
|
||||
raise ValueError(f"Unsupported distillation type: {self.distillation_type}. Use 'forward_kld' or 'reverse_kld'")
|
||||
|
||||
return (loss * mask).sum() / mask.sum()
|
||||
|
||||
|
||||
@staticmethod
|
||||
def _shift_tensor_right(inputs: torch.Tensor, labels: torch.Tensor, pad_value: float = 0.0):
|
||||
batch_size, seqlen, vocab_size = inputs.shape
|
||||
device = inputs.device
|
||||
labels_ne = labels != -100
|
||||
shift_distances = torch.argmax(labels_ne.int(), dim=1)
|
||||
idx = torch.arange(seqlen, device=device).unsqueeze(0).expand(batch_size, seqlen)
|
||||
shifted_idx = idx - shift_distances.unsqueeze(1)
|
||||
mask = shifted_idx >= 0
|
||||
shifted_idx = shifted_idx.clamp(min=0)
|
||||
inputs_flat = inputs.view(batch_size, seqlen, vocab_size)
|
||||
shifted_idx = shifted_idx.unsqueeze(2).expand(-1, -1, vocab_size)
|
||||
gathered = torch.gather(inputs_flat, 1, shifted_idx)
|
||||
mask = mask.unsqueeze(2).expand(-1, -1, vocab_size)
|
||||
return torch.where(mask, gathered, torch.full_like(gathered, pad_value))
|
||||
|
||||
|
||||
def compute_loss(self, model: PreTrainedModel, inputs: Dict[str, torch.Tensor], return_outputs=False, num_items_in_batch=None):
|
||||
outputs = model(**inputs)
|
||||
lm_loss = outputs.loss
|
||||
if self.logits_dir:
|
||||
teacher_logits = self._load_teacher_logits(
|
||||
batch_size=inputs['input_ids'].size(0),
|
||||
it=self.state.global_step,
|
||||
dp_rank=torch.distributed.get_rank() if torch.distributed.is_initialized() else 0,
|
||||
device=model.device,
|
||||
no_model_batch={'label': inputs.get('labels', None)}
|
||||
)
|
||||
distil_loss = self._compute_white_box_distillation_loss(
|
||||
student_logits=outputs.logits,
|
||||
teacher_logits=teacher_logits,
|
||||
labels=inputs.get('labels', None)
|
||||
)
|
||||
total_loss = (1 - self.kd_ratio) * lm_loss + self.kd_ratio * distil_loss
|
||||
else:
|
||||
total_loss = lm_loss
|
||||
return (total_loss, outputs) if return_outputs else total_loss
|
||||
|
||||
|
||||
def formatting_func(examples):
|
||||
env = Environment(loader=BaseLoader())
|
||||
try:
|
||||
message = {"content": examples["instruction"],"output":examples["output"]}
|
||||
full_text = template.render(
|
||||
message=message,
|
||||
add_generation_prompt=False,
|
||||
add_output=True
|
||||
)
|
||||
return full_text
|
||||
except Exception as e:
|
||||
logging.warning(f"Error processing sample: {str(e)}")
|
||||
return ""
|
||||
|
||||
|
||||
def train(config):
|
||||
dataset = load_dataset("json", data_files=config["dataset"]["labeled_path"])
|
||||
|
||||
student_tokenizer = AutoTokenizer.from_pretrained(
|
||||
config["models"]["student"],
|
||||
trust_remote_code=True
|
||||
)
|
||||
student_model = AutoModelForCausalLM.from_pretrained(
|
||||
config["models"]["student"],
|
||||
trust_remote_code=True
|
||||
)
|
||||
|
||||
global template
|
||||
full_path = config["dataset"]["template"]
|
||||
template_dir = os.path.dirname(full_path)
|
||||
template_file = os.path.basename(full_path)
|
||||
env = Environment(loader=FileSystemLoader(template_dir))
|
||||
template = env.get_template(template_file)
|
||||
training_arguments = SFTConfig(**config["training"])
|
||||
|
||||
try:
|
||||
job_type = config["job_type"]
|
||||
if "kd_black_box" in job_type:
|
||||
dataset = dataset.shuffle(seed=config["dataset"]["seed"])
|
||||
trainer = SFTTrainer(
|
||||
model=student_model,
|
||||
processing_class=student_tokenizer,
|
||||
args=training_arguments,
|
||||
train_dataset=dataset["train"],
|
||||
formatting_func=formatting_func
|
||||
)
|
||||
elif "kd_white_box" in job_type:
|
||||
teacher_vocab_size=json.load(open(os.path.join(config["models"]["teacher"], 'config.json')))['vocab_size']
|
||||
trainer = DistillSFTTrainer(
|
||||
logits_dir=config["dataset"]["logits_path"],
|
||||
teacher_vocab_size=teacher_vocab_size,
|
||||
kd_ratio=config["distillation"]["kd_ratio"],
|
||||
max_seq_length=config["distillation"]["max_seq_length"],
|
||||
distillation_type=config["distillation"].get("distillation_type", "forward_kld"),
|
||||
model=student_model,
|
||||
processing_class=student_tokenizer,
|
||||
args=training_arguments,
|
||||
train_dataset=dataset["train"],
|
||||
formatting_func=formatting_func
|
||||
)
|
||||
else:
|
||||
logging.error(f"Invalid job type: {job_type}")
|
||||
raise ValueError(f"Invalid job type: {job_type}")
|
||||
except ValueError as e:
|
||||
logging.error(f"Training job terminated: {e}")
|
||||
return
|
||||
|
||||
trainer.train()
|
||||
trainer.save_model(config["training"]["output_dir"])
|
||||
student_tokenizer.save_pretrained(config["training"]["output_dir"])
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--config', type=str, required=True, help='path to the json config file')
|
||||
args = parser.parse_args()
|
||||
config = json.load(open(args.config))
|
||||
train(config)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Reference in New Issue
Block a user