init commit

This commit is contained in:
熊兮
2025-05-27 18:55:46 +08:00
parent 6f52a67249
commit 25caa8a90a
65 changed files with 4893 additions and 1 deletions

247
easydistill/kd/infer.py Normal file
View File

@@ -0,0 +1,247 @@
# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import json, jsonlines
import argparse
import torch
import logging
import os
from jinja2 import Environment, FileSystemLoader
from transformers import AutoModelForCausalLM, AutoTokenizer
from vllm import LLM, SamplingParams
from tqdm import tqdm
from openai import OpenAI
import math
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
def read_json_field(filename, field_name='instruction'):
try:
with open(filename, 'r') as file:
data = json.load(file)
output_fields = []
for item in data:
if field_name in item:
output_fields.append(item[field_name])
return output_fields
except FileNotFoundError:
logging.error("The file was not found.")
except json.JSONDecodeError:
logging.error("There was an error decoding the JSON file.")
except Exception as e:
logging.error(f"An error occurred: {e}")
def write_data_to_json_file(data, file_path):
try:
with open(file_path, 'w') as file:
json.dump(data, file, ensure_ascii=False, indent=4)
logging.info(f"Data successfully written to {file_path}")
except Exception as e:
logging.error(f"An error occurred: {e}")
def load_tokenizer_and_vllm(config, eos_token=None):
teacher_model_path = config["models"]["teacher"]
logging.info(f"Loading ckpt and tokenizer: {teacher_model_path}")
tokenizer = AutoTokenizer.from_pretrained(teacher_model_path, trust_remote_code=True)
tokenizer.padding_side = "left"
if eos_token:
eos_token_id = tokenizer.convert_tokens_to_ids(eos_token)
logging.info(f"eos_token {eos_token} from user input")
elif hasattr(tokenizer, "eos_token_id") and tokenizer.eos_token_id:
logging.info(f"Initial eos_token_id {tokenizer.eos_token_id} from tokenizer")
eos_token_id = tokenizer.eos_token_id
eos_token = tokenizer.convert_ids_to_tokens(eos_token_id)
else:
raise ValueError("No available eos_token or eos_token_id.")
try:
tokenizer.eos_token = eos_token
tokenizer.eos_token_id = eos_token_id
tokenizer.pad_token = eos_token
tokenizer.pad_token_id = eos_token_id
except:
logging.info(f"[WARNING] Cannot set tokenizer.eos_token")
logging.info(f"tokenizer's eos_token: {tokenizer.eos_token}, pad_token: {tokenizer.pad_token}")
logging.info(f"tokenizer's eos_token_id: {tokenizer.eos_token_id}, pad_token_id: {tokenizer.pad_token_id}")
num_gpus = torch.cuda.device_count()
llm = LLM(
model=teacher_model_path,
tensor_parallel_size=num_gpus,
enable_chunked_prefill=config["inference"]["enable_chunked_prefill"],
gpu_memory_utilization=config["inference"]["gpu_memory_utilization"],
trust_remote_code=config["inference"]["trust_remote_code"],
dtype=torch.bfloat16,
enforce_eager=config["inference"]["enforce_eager"],
max_model_len=config["inference"]["max_model_len"],
)
logging.info("vLLM model loaded successfully")
return tokenizer, llm
def generate_teacher_response_batch(tokenizer, llm, data_list, config, batch_size=32):
full_path = config["dataset"]["template"]
template_dir = os.path.dirname(full_path)
template_file = os.path.basename(full_path)
env = Environment(loader=FileSystemLoader(template_dir))
template = env.get_template(template_file)
outcomes = []
batches = [data_list[i:i + batch_size] for i in range(0, len(data_list), batch_size)]
for batch in tqdm(batches, desc="Generating responses"):
new_batch = []
for sample in batch:
message = {"role": "user", "content": sample}
full_text = template.render(
message = message,
add_generation_prompt = True,
add_output = False
)
new_batch.append(full_text)
outputs = llm.generate(
new_batch,
SamplingParams(
n = 1,
top_k = 1,
temperature = config["inference"]["temperature"],
seed = config["inference"]["seed"],
skip_special_tokens = False,
ignore_eos = False,
max_tokens = config["inference"]["max_new_tokens"]
)
)
responses = [output.outputs[0].text for output in outputs]
gen_data = [{'instruction': batch[i], 'output': responses[i]} for i in range(len(batch))]
outcomes = outcomes + gen_data
write_data_to_json_file(outcomes, config["dataset"]["labeled_path"])
def generate_teacher_logits_batch(tokenizer, llm, data_list, config, batch_size=32):
full_path = config["dataset"]["template"]
template_dir = os.path.dirname(full_path)
template_file = os.path.basename(full_path)
env = Environment(loader=FileSystemLoader(template_dir))
template = env.get_template(template_file)
batches = [data_list[i:i + batch_size] for i in range(0, len(data_list), batch_size)]
for batch in tqdm(batches, desc="Generating responses"):
new_batch = []
for sample in batch:
message={"role": "user", "content": sample}
full_text = template.render(
message=message,
add_generation_prompt=True,
add_output=False
)
new_batch.append(full_text)
outputs = llm.generate(
new_batch, # Pass the raw text directly
SamplingParams(
n=1,
top_k=1,
temperature=config["inference"]["temperature"],
seed=config["inference"]["seed"],
skip_special_tokens=False,
ignore_eos=True,
max_tokens=config["inference"]["max_new_tokens"],
logprobs=config["inference"]["top_logits_num"],
)
)
# Extract the generated logits
responses = [output.outputs[0].text for output in outputs]
logits=[output.outputs[0].logprobs for output in outputs]
for logit in logits:
for pos in logit:
for k,v in pos.items():
pos[k]=math.exp(v.logprob)
with jsonlines.open(config["dataset"]["logits_path"], mode='a') as writer:
for row in logits:
#for item in row:
writer.write(row)
def generate_teacher_response_api(data_list, config):
client = OpenAI(
api_key = config["inference"]["api_key"],
base_url = config["inference"]["base_url"]
)
models = client.models.list()
model = models.data[0].id
logging.info(model)
system_prompt = config["inference"]["system_prompt"]
stream = config["inference"]["stream"]
outcomes = []
for sample in tqdm(data_list, desc="Call remote model and generating responses"):
if system_prompt == "":
message = [
{'role': 'user', 'content': sample}
]
else:
message = [
{'role': 'system', 'content': system_prompt},
{'role': 'user', 'content': sample}
]
completion = client.chat.completions.create(
messages = message,
model = model,
max_completion_tokens = config["inference"]["max_new_tokens"],
stream = stream
)
if stream:
result = ""
for chunk in completion:
result += chunk.choices[0].delta.content
else:
result = completion.choices[0].message.content
outcomes.append({'instruction': sample, 'output': result})
write_data_to_json_file(outcomes, config["dataset"]["labeled_path"])
def infer_with_teacher_model(config):
logging.info('Generating distillation data from the teacher model!')
data_list = read_json_field(config["dataset"]["instruction_path"])
try:
job_type = config["job_type"]
if job_type == "kd_black_box_api":
generate_teacher_response_api(data_list, config)
elif job_type == "kd_black_box_local":
tokenizer, llm = load_tokenizer_and_vllm(config)
generate_teacher_response_batch(tokenizer, llm, data_list, config)
elif job_type == "kd_white_box":
tokenizer, llm = load_tokenizer_and_vllm(config)
generate_teacher_logits_batch(tokenizer, llm, data_list, config)
else:
logging.error(f"Invalid job type: {job_type}")
raise ValueError(f"Invalid job type: {job_type}")
except ValueError as e:
logging.error(f"Training job terminated: {e}")
return
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, required=True, help='path to the json config file')
args = parser.parse_args()
config = json.load(open(args.config))
infer_with_teacher_model(config)
if __name__ == "__main__":
main()

218
easydistill/kd/train.py Normal file
View File

@@ -0,0 +1,218 @@
# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import json
import argparse
import logging
import os
from jinja2 import Environment, BaseLoader, FileSystemLoader
from datasets import load_dataset,Dataset
from typing import Optional, Dict, Union, List
from datasets import Dataset
from transformers import PreTrainedModel, PreTrainedTokenizerBase,AutoModelForCausalLM, AutoTokenizer, TrainingArguments
from trl import SFTTrainer,SFTConfig
import torch
import jsonlines
import numpy as np
import torch.nn.functional as F
class DistillSFTTrainer(SFTTrainer):
def __init__(
self,
logits_dir: str = None,
teacher_vocab_size = None,
kd_ratio: float = 0.5,
max_seq_length : int = 1024,
distillation_type: str = "forward_kld",
**kwargs
):
super().__init__(**kwargs)
self.logits_dir = logits_dir
self.teacher_vocab_size = teacher_vocab_size
self.kd_ratio = kd_ratio
self.max_seq_length = max_seq_length
self.distillation_type = distillation_type
self.teacher_logits = []
with jsonlines.open(self.logits_dir) as reader:
for obj in reader:
self.teacher_logits.append(obj)
def _load_teacher_logits(self, batch_size: int, it: int, dp_rank: int, device: torch.device, no_model_batch: Dict):
start_idx = dp_rank * batch_size + batch_size * it
end_idx = dp_rank * batch_size + batch_size * (it + 1)
loaded_data = self.teacher_logits[start_idx:end_idx]
arr = np.zeros((batch_size, self.max_seq_length, self.teacher_vocab_size))
for i in range(len(loaded_data)):
for j in range(len(loaded_data[i])):
keys = np.array(list(loaded_data[i][j].keys()), dtype=int)
values = np.array(list(loaded_data[i][j].values()))
arr[i, j, keys] = values
logits_tensor = torch.tensor(arr, dtype=torch.bfloat16, device=device)
return self._shift_tensor_right(logits_tensor, no_model_batch['label'], pad_value=0)
def _compute_white_box_distillation_loss(self, student_logits: torch.Tensor, teacher_logits: torch.Tensor, labels: Optional[torch.Tensor]):
student_logits = student_logits[:, :self.max_seq_length, :]
teacher_probs = teacher_logits[:, :student_logits.size(1), :student_logits.size(-1)]
mask = (labels != -100).float() if labels is not None else torch.ones_like(student_logits[:, :, 0])
if self.distillation_type == "forward_kld":
# Forward KLD: student learns from teacher (original implementation)
loss = F.kl_div(
F.log_softmax(student_logits, dim=-1),
teacher_probs,
reduction='none',
log_target=False
).sum(dim=-1)/torch.sum(mask.view(-1), dim=0)
elif self.distillation_type == "reverse_kld":
# Reverse KLD: teacher provides certainty to student
loss = F.kl_div(
torch.log(teacher_probs.clamp(min=1e-10)), # avoid log(0)
F.softmax(student_logits, dim=-1),
reduction='none',
log_target=False
).sum(dim=-1)/torch.sum(mask.view(-1), dim=0)
else:
raise ValueError(f"Unsupported distillation type: {self.distillation_type}. Use 'forward_kld' or 'reverse_kld'")
return (loss * mask).sum() / mask.sum()
@staticmethod
def _shift_tensor_right(inputs: torch.Tensor, labels: torch.Tensor, pad_value: float = 0.0):
batch_size, seqlen, vocab_size = inputs.shape
device = inputs.device
labels_ne = labels != -100
shift_distances = torch.argmax(labels_ne.int(), dim=1)
idx = torch.arange(seqlen, device=device).unsqueeze(0).expand(batch_size, seqlen)
shifted_idx = idx - shift_distances.unsqueeze(1)
mask = shifted_idx >= 0
shifted_idx = shifted_idx.clamp(min=0)
inputs_flat = inputs.view(batch_size, seqlen, vocab_size)
shifted_idx = shifted_idx.unsqueeze(2).expand(-1, -1, vocab_size)
gathered = torch.gather(inputs_flat, 1, shifted_idx)
mask = mask.unsqueeze(2).expand(-1, -1, vocab_size)
return torch.where(mask, gathered, torch.full_like(gathered, pad_value))
def compute_loss(self, model: PreTrainedModel, inputs: Dict[str, torch.Tensor], return_outputs=False, num_items_in_batch=None):
outputs = model(**inputs)
lm_loss = outputs.loss
if self.logits_dir:
teacher_logits = self._load_teacher_logits(
batch_size=inputs['input_ids'].size(0),
it=self.state.global_step,
dp_rank=torch.distributed.get_rank() if torch.distributed.is_initialized() else 0,
device=model.device,
no_model_batch={'label': inputs.get('labels', None)}
)
distil_loss = self._compute_white_box_distillation_loss(
student_logits=outputs.logits,
teacher_logits=teacher_logits,
labels=inputs.get('labels', None)
)
total_loss = (1 - self.kd_ratio) * lm_loss + self.kd_ratio * distil_loss
else:
total_loss = lm_loss
return (total_loss, outputs) if return_outputs else total_loss
def formatting_func(examples):
env = Environment(loader=BaseLoader())
try:
message = {"content": examples["instruction"],"output":examples["output"]}
full_text = template.render(
message=message,
add_generation_prompt=False,
add_output=True
)
return full_text
except Exception as e:
logging.warning(f"Error processing sample: {str(e)}")
return ""
def train(config):
dataset = load_dataset("json", data_files=config["dataset"]["labeled_path"])
student_tokenizer = AutoTokenizer.from_pretrained(
config["models"]["student"],
trust_remote_code=True
)
student_model = AutoModelForCausalLM.from_pretrained(
config["models"]["student"],
trust_remote_code=True
)
global template
full_path = config["dataset"]["template"]
template_dir = os.path.dirname(full_path)
template_file = os.path.basename(full_path)
env = Environment(loader=FileSystemLoader(template_dir))
template = env.get_template(template_file)
training_arguments = SFTConfig(**config["training"])
try:
job_type = config["job_type"]
if "kd_black_box" in job_type:
dataset = dataset.shuffle(seed=config["dataset"]["seed"])
trainer = SFTTrainer(
model=student_model,
processing_class=student_tokenizer,
args=training_arguments,
train_dataset=dataset["train"],
formatting_func=formatting_func
)
elif "kd_white_box" in job_type:
teacher_vocab_size=json.load(open(os.path.join(config["models"]["teacher"], 'config.json')))['vocab_size']
trainer = DistillSFTTrainer(
logits_dir=config["dataset"]["logits_path"],
teacher_vocab_size=teacher_vocab_size,
kd_ratio=config["distillation"]["kd_ratio"],
max_seq_length=config["distillation"]["max_seq_length"],
distillation_type=config["distillation"].get("distillation_type", "forward_kld"),
model=student_model,
processing_class=student_tokenizer,
args=training_arguments,
train_dataset=dataset["train"],
formatting_func=formatting_func
)
else:
logging.error(f"Invalid job type: {job_type}")
raise ValueError(f"Invalid job type: {job_type}")
except ValueError as e:
logging.error(f"Training job terminated: {e}")
return
trainer.train()
trainer.save_model(config["training"]["output_dir"])
student_tokenizer.save_pretrained(config["training"]["output_dir"])
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, required=True, help='path to the json config file')
args = parser.parse_args()
config = json.load(open(args.config))
train(config)
if __name__ == "__main__":
main()