Merge pull request #16 from bug-orz/main
Add mmkd( blackbox_local, whitebox)
This commit is contained in:
@@ -1,8 +1,8 @@
|
||||
{
|
||||
"job_type": "kd_black_box_api",
|
||||
"dataset": {
|
||||
"instruction_path": "train.json",
|
||||
"labeled_path": "train_labeled.json",
|
||||
"instruction_path": "data/alpaca_en_demo.json",
|
||||
"labeled_path": "data/alpaca_en_demo_labeled.json",
|
||||
"template" : "./chat_template/chat_template_kd.jinja",
|
||||
"seed": 42
|
||||
},
|
||||
@@ -29,4 +29,4 @@
|
||||
"warmup_ratio": 0.1,
|
||||
"lr_scheduler_type": "cosine"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -1,8 +1,8 @@
|
||||
{
|
||||
"job_type": "kd_black_box_local",
|
||||
"dataset": {
|
||||
"instruction_path": "train.json",
|
||||
"labeled_path": "train_labeled.json",
|
||||
"instruction_path": "data/alpaca_en_demo.json",
|
||||
"labeled_path": "data/alpaca_en_demo_labeled.json",
|
||||
"template" : "./chat_template/chat_template_kd.jinja",
|
||||
"seed": 42
|
||||
},
|
||||
@@ -33,4 +33,4 @@
|
||||
"warmup_ratio": 0.1,
|
||||
"lr_scheduler_type": "cosine"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -1,8 +1,8 @@
|
||||
{
|
||||
"job_type": "mmkd_black_box_api",
|
||||
"dataset": {
|
||||
"instruction_path": "train.json",
|
||||
"labeled_path": "train_labeled.json",
|
||||
"instruction_path": "data/mllm_demo.json",
|
||||
"labeled_path": "data/mllm_demo_distill.json",
|
||||
"seed": 42
|
||||
},
|
||||
"inference":{
|
||||
|
35
configs/mmkd_black_box_local.json
Normal file
35
configs/mmkd_black_box_local.json
Normal file
@@ -0,0 +1,35 @@
|
||||
{
|
||||
"job_type": "mmkd_black_box_local",
|
||||
"dataset": {
|
||||
"instruction_path": "data/mllm_demo.json",
|
||||
"labeled_path": "data/mllm_demo_distill.json",
|
||||
"seed": 42
|
||||
},
|
||||
"inference":{
|
||||
"enable_chunked_prefill": true,
|
||||
"seed": 777,
|
||||
"gpu_memory_utilization": 0.9,
|
||||
"temperature": 0.8,
|
||||
"trust_remote_code": true,
|
||||
"enforce_eager": false,
|
||||
"max_model_len": 4096,
|
||||
"max_new_tokens": 512
|
||||
},
|
||||
"models": {
|
||||
"teacher": "Qwen/Qwen2.5-VL-72B-Instruct",
|
||||
"student": "Qwen/Qwen2.5-VL-3B-Instruct"
|
||||
},
|
||||
"training": {
|
||||
"output_dir": "./result/",
|
||||
"num_train_epochs": 3,
|
||||
"per_device_train_batch_size": 1,
|
||||
"gradient_accumulation_steps": 8,
|
||||
"max_length":512,
|
||||
"save_steps": 1000,
|
||||
"logging_steps": 1,
|
||||
"learning_rate": 2e-5,
|
||||
"weight_decay": 0.05,
|
||||
"warmup_ratio": 0.1,
|
||||
"lr_scheduler_type": "cosine"
|
||||
}
|
||||
}
|
42
configs/mmkd_white_box.json
Normal file
42
configs/mmkd_white_box.json
Normal file
@@ -0,0 +1,42 @@
|
||||
{
|
||||
"job_type": "mmkd_white_box",
|
||||
"dataset": {
|
||||
"instruction_path": "data/mllm_demo.json",
|
||||
"labeled_path": "data/mllm_demo_distill.json",
|
||||
"logits_path": "./logits.json",
|
||||
"seed": 42
|
||||
},
|
||||
"inference":{
|
||||
"enable_chunked_prefill": true,
|
||||
"seed": 777,
|
||||
"gpu_memory_utilization": 0.9,
|
||||
"temperature": 0.8,
|
||||
"trust_remote_code": true,
|
||||
"enforce_eager": false,
|
||||
"max_model_len": 4096,
|
||||
"max_new_tokens": 512,
|
||||
"top_logits_num": 10
|
||||
},
|
||||
"distillation": {
|
||||
"kd_ratio": 0.1,
|
||||
"max_seq_length": 512,
|
||||
"distillation_type": "forward_kld"
|
||||
},
|
||||
"models": {
|
||||
"teacher": "Qwen/Qwen2.5-VL-72B-Instruct",
|
||||
"student": "Qwen/Qwen2.5-VL-3B-Instruct"
|
||||
},
|
||||
"training": {
|
||||
"output_dir": "./result/",
|
||||
"num_train_epochs": 30,
|
||||
"per_device_train_batch_size": 1,
|
||||
"gradient_accumulation_steps": 8,
|
||||
"max_length":512,
|
||||
"save_steps": 1000,
|
||||
"logging_steps": 1,
|
||||
"learning_rate": 2e-5,
|
||||
"weight_decay": 0.05,
|
||||
"warmup_ratio": 0.1,
|
||||
"lr_scheduler_type": "cosine"
|
||||
}
|
||||
}
|
1
data/alpaca_en_demo.json
Normal file
1
data/alpaca_en_demo.json
Normal file
File diff suppressed because one or more lines are too long
226
data/mllm_demo.json
Normal file
226
data/mllm_demo.json
Normal file
@@ -0,0 +1,226 @@
|
||||
[
|
||||
[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are a helpful assistant."
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image",
|
||||
"image": "mllm_demo_data/1.jpg"
|
||||
},
|
||||
{
|
||||
"type": "text",
|
||||
"text": "<image>Who are they?"
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "They're Kane and Gretzka from Bayern Munich."
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image",
|
||||
"image": "mllm_demo_data/1.jpg"
|
||||
},
|
||||
{
|
||||
"type": "text",
|
||||
"text": "What are they doing?<image>"
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "They are celebrating on the soccer field."
|
||||
}
|
||||
],
|
||||
[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are a helpful assistant."
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image",
|
||||
"image": "mllm_demo_data/2.jpg"
|
||||
},
|
||||
{
|
||||
"type": "text",
|
||||
"text": "<image>Who is he?"
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "He's Thomas Muller from Bayern Munich."
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "Why is he on the ground?"
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "Because he's sliding on his knees to celebrate."
|
||||
}
|
||||
],
|
||||
[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are a helpful assistant."
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image",
|
||||
"image": "mllm_demo_data/3.jpg"
|
||||
},
|
||||
{
|
||||
"type": "text",
|
||||
"text": "<image>Please describe this image"
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "Chinese astronaut Gui Haichao is giving a speech."
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "What has he accomplished?"
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "He was appointed to be a payload specialist on Shenzhou 16 mission in June 2022, thus becoming the first Chinese civilian of Group 3 in space on 30 May 2023. He is responsible for the on-orbit operation of space science experimental payloads."
|
||||
}
|
||||
],
|
||||
[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are a helpful assistant."
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image",
|
||||
"image": "mllm_demo_data/1.jpg"
|
||||
},
|
||||
{
|
||||
"type": "text",
|
||||
"text": "<image>\u4ed6\u4eec\u662f\u8c01\uff1f"
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "\u4ed6\u4eec\u662f\u62dc\u4ec1\u6155\u5c3c\u9ed1\u7684\u51ef\u6069\u548c\u683c\u96f7\u8328\u5361\u3002"
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image",
|
||||
"image": "mllm_demo_data/1.jpg"
|
||||
},
|
||||
{
|
||||
"type": "text",
|
||||
"text": "\u4ed6\u4eec\u5728\u505a\u4ec0\u4e48\uff1f<image>"
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "\u4ed6\u4eec\u5728\u8db3\u7403\u573a\u4e0a\u5e86\u795d\u3002"
|
||||
}
|
||||
],
|
||||
[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are a helpful assistant."
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image",
|
||||
"image": "mllm_demo_data/2.jpg"
|
||||
},
|
||||
{
|
||||
"type": "text",
|
||||
"text": "<image>\u4ed6\u662f\u8c01\uff1f"
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "\u4ed6\u662f\u6765\u81ea\u62dc\u4ec1\u6155\u5c3c\u9ed1\u7684\u6258\u9a6c\u65af\u00b7\u7a46\u52d2\u3002"
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "\u4ed6\u4e3a\u4ec0\u4e48\u5728\u5730\u4e0a\uff1f"
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "\u56e0\u4e3a\u4ed6\u6b63\u5728\u53cc\u819d\u8dea\u5730\u6ed1\u884c\u5e86\u795d\u3002"
|
||||
}
|
||||
],
|
||||
[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are a helpful assistant."
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image",
|
||||
"image": "mllm_demo_data/3.jpg"
|
||||
},
|
||||
{
|
||||
"type": "text",
|
||||
"text": "<image>\u8bf7\u63cf\u8ff0\u8fd9\u5f20\u56fe\u7247"
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "\u4e2d\u56fd\u5b87\u822a\u5458\u6842\u6d77\u6f6e\u6b63\u5728\u8bb2\u8bdd\u3002"
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "\u4ed6\u53d6\u5f97\u8fc7\u54ea\u4e9b\u6210\u5c31\uff1f"
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "\u4ed6\u4e8e2022\u5e746\u6708\u88ab\u4efb\u547d\u4e3a\u795e\u821f\u5341\u516d\u53f7\u4efb\u52a1\u7684\u6709\u6548\u8f7d\u8377\u4e13\u5bb6\uff0c\u4ece\u800c\u6210\u4e3a2023\u5e745\u670830\u65e5\u8fdb\u5165\u592a\u7a7a\u7684\u9996\u4f4d\u5e73\u6c11\u5b87\u822a\u5458\u3002\u4ed6\u8d1f\u8d23\u5728\u8f68\u64cd\u4f5c\u7a7a\u95f4\u79d1\u5b66\u5b9e\u9a8c\u6709\u6548\u8f7d\u8377\u3002"
|
||||
}
|
||||
]
|
||||
]
|
BIN
data/mllm_demo_data/1.jpg
Normal file
BIN
data/mllm_demo_data/1.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 12 KiB |
BIN
data/mllm_demo_data/2.jpg
Normal file
BIN
data/mllm_demo_data/2.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 22 KiB |
BIN
data/mllm_demo_data/3.jpg
Normal file
BIN
data/mllm_demo_data/3.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 16 KiB |
@@ -91,17 +91,6 @@ def process(job_type, config):
|
||||
logging.info(f"Running command: {cmd_train}")
|
||||
run_cmd(cmd_train)
|
||||
|
||||
elif job_type in ['kd_black_box_train_only_multi', 'kd_white_box_train_only_multi']:
|
||||
cmd_train = [
|
||||
'accelerate', 'launch',
|
||||
'--config_file', os.path.join(parent_dir, 'configs/accelerate_config/muti_gpu.yaml'),
|
||||
os.path.join(script_dir, 'kd/multi_train.py'),
|
||||
'--config', config
|
||||
]
|
||||
cmd_train = ' '.join(cmd_train)
|
||||
logging.info(f"Running command: {cmd_train}")
|
||||
run_cmd(cmd_train)
|
||||
|
||||
elif job_type in ['kd_black_box_api', 'kd_black_box_local', 'kd_white_box']:
|
||||
cmd_infer = [
|
||||
'python', os.path.join(script_dir, 'kd/infer.py'),
|
||||
@@ -110,6 +99,7 @@ def process(job_type, config):
|
||||
cmd_infer = ' '.join(cmd_infer)
|
||||
logging.info(f"Running command: {cmd_infer}")
|
||||
infer_success = run_cmd(cmd_infer)
|
||||
|
||||
if infer_success:
|
||||
cmd_train = [
|
||||
'accelerate', 'launch',
|
||||
@@ -122,6 +112,29 @@ def process(job_type, config):
|
||||
run_cmd(cmd_train)
|
||||
else:
|
||||
logging.error("Infer failed, skipping training")
|
||||
|
||||
elif job_type in ['mmkd_black_box_api', 'mmkd_black_box_local', 'mmkd_white_box']:
|
||||
|
||||
cmd_infer = [
|
||||
'python', os.path.join(script_dir, 'mmkd/infer.py'),
|
||||
'--config', config
|
||||
]
|
||||
cmd_infer = ' '.join(cmd_infer)
|
||||
logging.info(f"Running command: {cmd_infer}")
|
||||
infer_success = run_cmd(cmd_infer)
|
||||
|
||||
if infer_success:
|
||||
cmd_train = [
|
||||
'accelerate', 'launch',
|
||||
'--config_file', os.path.join(parent_dir, 'configs/accelerate_config/muti_gpu.yaml'),
|
||||
os.path.join(script_dir, 'mmkd/train.py'),
|
||||
'--config', config
|
||||
]
|
||||
cmd_train = ' '.join(cmd_train)
|
||||
logging.info(f"Running command: {cmd_train}")
|
||||
run_cmd(cmd_train)
|
||||
else:
|
||||
logging.error("Infer failed, skipping training")
|
||||
|
||||
# Reinforcement Learning tasks
|
||||
elif job_type in ['rl_ppo', 'rl_grpo']:
|
||||
|
@@ -14,11 +14,16 @@
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
|
||||
import json
|
||||
import json, jsonlines
|
||||
import math
|
||||
import argparse
|
||||
import logging
|
||||
from tqdm import tqdm
|
||||
from openai import OpenAI
|
||||
import torch
|
||||
from transformers import AutoProcessor, AutoTokenizer
|
||||
from vllm import LLM, SamplingParams
|
||||
from qwen_vl_utils import process_vision_info
|
||||
|
||||
|
||||
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
||||
@@ -28,12 +33,7 @@ def read_json_field(filename):
|
||||
try:
|
||||
with open(filename, 'r') as file:
|
||||
data = json.load(file)
|
||||
outputs = []
|
||||
for item in data:
|
||||
text = item["instruction"]
|
||||
image = item["image"]
|
||||
outputs.append((text, image))
|
||||
return outputs
|
||||
return data
|
||||
except FileNotFoundError:
|
||||
logging.error("The file was not found.")
|
||||
except json.JSONDecodeError:
|
||||
@@ -50,6 +50,170 @@ def write_data_to_json_file(data, file_path):
|
||||
except Exception as e:
|
||||
logging.error(f"An error occurred: {e}")
|
||||
|
||||
def load_tokenizer_and_vllm(config, eos_token=None):
|
||||
|
||||
model_path = config["models"]["teacher"]
|
||||
logging.info(f"Loading processor & vLLM model from {model_path}")
|
||||
|
||||
# 1. Use AutoProcessor, which integrates the tokenizer, image_processor, and video_processor
|
||||
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
# 2. eos / pad token 处理(与官方示例保持一致,不再显式改 pad_token)
|
||||
if eos_token:
|
||||
eos_token_id = processor.tokenizer.convert_tokens_to_ids(eos_token)
|
||||
logging.info(f"eos_token {eos_token} from user input")
|
||||
elif hasattr(processor.tokenizer, "eos_token_id") and processor.tokenizer.eos_token_id is not None:
|
||||
eos_token_id = processor.tokenizer.eos_token_id
|
||||
eos_token = processor.tokenizer.convert_ids_to_tokens(eos_token_id)
|
||||
logging.info(f"Initial eos_token_id {eos_token_id} from tokenizer")
|
||||
else:
|
||||
raise ValueError("No available eos_token or eos_token_id.")
|
||||
|
||||
# 3. 设置 tokenizer 的 eos 相关字段(pad_token 保持 None,由 vLLM 自动处理)
|
||||
try:
|
||||
processor.tokenizer.eos_token = eos_token
|
||||
processor.tokenizer.eos_token_id = eos_token_id
|
||||
except Exception as e:
|
||||
logging.warning(f"[WARNING] Cannot set eos_token: {e}")
|
||||
|
||||
logging.info(
|
||||
f"processor.tokenizer eos_token: {processor.tokenizer.eos_token}, "
|
||||
f"eos_token_id: {processor.tokenizer.eos_token_id}"
|
||||
)
|
||||
|
||||
num_gpus = torch.cuda.device_count()
|
||||
llm = LLM(
|
||||
model=model_path,
|
||||
tensor_parallel_size=num_gpus,
|
||||
trust_remote_code=True,
|
||||
limit_mm_per_prompt={"image": 10, "video": 10}, # 可按需调整
|
||||
# 其余超参沿用原 config
|
||||
gpu_memory_utilization=config["inference"].get("gpu_memory_utilization", 0.9),
|
||||
max_model_len=config["inference"].get("max_model_len", 4096),
|
||||
enforce_eager=config["inference"].get("enforce_eager", False),
|
||||
)
|
||||
|
||||
logging.info("Qwen2.5-VL vLLM model loaded successfully")
|
||||
#return processor, llm
|
||||
|
||||
return processor, llm
|
||||
|
||||
def generate_teacher_response_batch(processor, llm, data_list, config, batch_size=32):
|
||||
|
||||
outcomes = []
|
||||
sampling_params = SamplingParams(
|
||||
n = 1,
|
||||
top_k = 1,
|
||||
temperature=config["inference"]["temperature"],
|
||||
seed = config["inference"]["seed"],
|
||||
max_tokens = config["inference"]["max_new_tokens"],
|
||||
)
|
||||
batches = [data_list[i:i + batch_size] for i in range(0, len(data_list), batch_size)]
|
||||
for batch in tqdm(batches, desc="Generating responses"):
|
||||
new_batch = []
|
||||
batch_outcomes = []
|
||||
for sample in batch:
|
||||
batch_outcomes.append(sample)
|
||||
prompt = processor.apply_chat_template(
|
||||
sample,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True,
|
||||
)
|
||||
image_inputs, video_inputs = process_vision_info(sample)
|
||||
|
||||
mm_data = {}
|
||||
if image_inputs is not None:
|
||||
mm_data["image"] = image_inputs
|
||||
|
||||
sample_inputs = {
|
||||
"prompt": prompt,
|
||||
"multi_modal_data": mm_data,
|
||||
}
|
||||
new_batch.append(sample_inputs)
|
||||
outputs = llm.generate(new_batch, sampling_params=sampling_params)
|
||||
for b in range(len(batch_outcomes)):
|
||||
|
||||
generated_text = outputs[b].outputs[0].text
|
||||
out={
|
||||
"role": "assistant",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": generated_text,
|
||||
}
|
||||
],
|
||||
}
|
||||
batch_outcomes[b].append(out)
|
||||
outcomes.extend(batch_outcomes)
|
||||
write_data_to_json_file(outcomes, config["dataset"]["labeled_path"])
|
||||
|
||||
def generate_teacher_logits_batch(processor, llm, data_list, config, batch_size=32):
|
||||
|
||||
outcomes = []
|
||||
sampling_params = SamplingParams(
|
||||
n = 1,
|
||||
top_k = 1,
|
||||
temperature=config["inference"]["temperature"],
|
||||
seed = config["inference"]["seed"],
|
||||
skip_special_tokens=False,
|
||||
max_tokens = config["inference"]["max_new_tokens"],
|
||||
logprobs=config["inference"]["top_logits_num"],
|
||||
)
|
||||
batches = [data_list[i:i + batch_size] for i in range(0, len(data_list), batch_size)]
|
||||
logits=[]
|
||||
for batch in tqdm(batches, desc="Generating responses"):
|
||||
new_batch = []
|
||||
batch_outcomes = []
|
||||
for sample in batch:
|
||||
batch_outcomes.append(sample)
|
||||
prompt = processor.apply_chat_template(
|
||||
sample,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True,
|
||||
)
|
||||
image_inputs, video_inputs = process_vision_info(sample)
|
||||
|
||||
mm_data = {}
|
||||
if image_inputs is not None:
|
||||
mm_data["image"] = image_inputs
|
||||
|
||||
sample_inputs = {
|
||||
"prompt": prompt,
|
||||
"multi_modal_data": mm_data,
|
||||
}
|
||||
new_batch.append(sample_inputs)
|
||||
outputs = llm.generate(new_batch, sampling_params=sampling_params)
|
||||
logits+=[output.outputs[0].logprobs for output in outputs]
|
||||
|
||||
for b in range(len(batch_outcomes)):
|
||||
|
||||
generated_text = outputs[b].outputs[0].text
|
||||
out={
|
||||
"role": "assistant",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": generated_text,
|
||||
}
|
||||
],
|
||||
}
|
||||
batch_outcomes[b].append(out)
|
||||
outcomes.extend(batch_outcomes)
|
||||
|
||||
for logit in logits:
|
||||
for pos in logit:
|
||||
for k,v in pos.items():
|
||||
pos[k]=math.exp(v.logprob)
|
||||
|
||||
with jsonlines.open(config["dataset"]["logits_path"], mode='w') as writer:
|
||||
for row in logits:
|
||||
#for item in row:
|
||||
writer.write(row)
|
||||
|
||||
write_data_to_json_file(outcomes, config["dataset"]["labeled_path"])
|
||||
|
||||
|
||||
|
||||
|
||||
def generate_teacher_response_api(data_list, config):
|
||||
client = OpenAI(
|
||||
@@ -98,10 +262,18 @@ def generate_teacher_response_api(data_list, config):
|
||||
def infer_with_teacher_model(config):
|
||||
logging.info('Generating distillation data from the teacher model!')
|
||||
data_list = read_json_field(config["dataset"]["instruction_path"])
|
||||
|
||||
try:
|
||||
job_type = config["job_type"]
|
||||
if job_type == "mmkd_black_box_api":
|
||||
generate_teacher_response_api(data_list, config)
|
||||
elif job_type == "mmkd_black_box_local":
|
||||
tokenizer, llm = load_tokenizer_and_vllm(config)
|
||||
generate_teacher_response_batch(tokenizer, llm, data_list, config)
|
||||
elif job_type == "mmkd_white_box":
|
||||
|
||||
tokenizer, llm = load_tokenizer_and_vllm(config)
|
||||
generate_teacher_logits_batch(tokenizer, llm, data_list, config)
|
||||
else:
|
||||
logging.error(f"Invalid job type: {job_type}")
|
||||
raise ValueError(f"Invalid job type: {job_type}")
|
||||
|
@@ -15,10 +15,17 @@
|
||||
# ==============================================================================
|
||||
|
||||
import json
|
||||
import torch
|
||||
import numpy as np
|
||||
import jsonlines
|
||||
import torch.nn.functional as F
|
||||
import os
|
||||
import argparse
|
||||
import logging
|
||||
from datasets import load_dataset, Dataset
|
||||
from typing import Optional, Dict, Union, List
|
||||
from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLProcessor
|
||||
from transformers import PreTrainedModel, PreTrainedTokenizerBase,AutoModelForCausalLM, AutoTokenizer, TrainingArguments
|
||||
from qwen_vl_utils import process_vision_info
|
||||
from trl import SFTTrainer, SFTConfig
|
||||
|
||||
@@ -26,67 +33,195 @@ from trl import SFTTrainer, SFTConfig
|
||||
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
||||
|
||||
|
||||
from torch.utils.data import Dataset
|
||||
from PIL import Image
|
||||
import os
|
||||
|
||||
class MMDataset(Dataset):
|
||||
def __init__(self, data):
|
||||
self.data = data
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
return self.data[int(idx)]
|
||||
|
||||
class DistillSFTTrainer(SFTTrainer):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
logits_dir: str = None,
|
||||
teacher_vocab_size = None,
|
||||
kd_ratio: float = 0.5,
|
||||
max_seq_length : int = 1024,
|
||||
distillation_type: str = "forward_kld",
|
||||
**kwargs
|
||||
):
|
||||
super().__init__(**kwargs)
|
||||
self.logits_dir = logits_dir
|
||||
self.teacher_vocab_size = teacher_vocab_size
|
||||
self.kd_ratio = kd_ratio
|
||||
self.max_seq_length = max_seq_length
|
||||
self.distillation_type = distillation_type
|
||||
self.teacher_logits = []
|
||||
with jsonlines.open(self.logits_dir) as reader:
|
||||
for obj in reader:
|
||||
self.teacher_logits.append(obj)
|
||||
|
||||
|
||||
def _load_teacher_logits(self, batch_size: int, it: int, dp_rank: int, device: torch.device, no_model_batch: Dict):
|
||||
start_idx = dp_rank * batch_size + batch_size * it
|
||||
end_idx = dp_rank * batch_size + batch_size * (it + 1)
|
||||
loaded_data = self.teacher_logits[start_idx:end_idx]
|
||||
arr = np.zeros((batch_size, self.max_seq_length, self.teacher_vocab_size))
|
||||
for i in range(len(loaded_data)):
|
||||
for j in range(len(loaded_data[i])):
|
||||
keys = np.array(list(loaded_data[i][j].keys()), dtype=int)
|
||||
values = np.array(list(loaded_data[i][j].values()))
|
||||
arr[i, j, keys] = values
|
||||
|
||||
logits_tensor = torch.tensor(arr, dtype=torch.bfloat16, device=device)
|
||||
return self._shift_tensor_right(logits_tensor, no_model_batch['label'], pad_value=0)
|
||||
|
||||
|
||||
def _compute_white_box_distillation_loss(self, student_logits: torch.Tensor, teacher_logits: torch.Tensor, labels: Optional[torch.Tensor]):
|
||||
student_logits = student_logits[:, :self.max_seq_length, :]
|
||||
teacher_probs = teacher_logits[:, :student_logits.size(1), :student_logits.size(-1)]
|
||||
mask = (labels != -100).float() if labels is not None else torch.ones_like(student_logits[:, :, 0])
|
||||
|
||||
if self.distillation_type == "forward_kld":
|
||||
# Forward KLD: student learns from teacher (original implementation)
|
||||
loss = F.kl_div(
|
||||
F.log_softmax(student_logits, dim=-1),
|
||||
teacher_probs,
|
||||
reduction='none',
|
||||
log_target=False
|
||||
).sum(dim=-1)/torch.sum(mask.view(-1), dim=0)
|
||||
elif self.distillation_type == "reverse_kld":
|
||||
# Reverse KLD: teacher provides certainty to student
|
||||
loss = F.kl_div(
|
||||
torch.log(teacher_probs.clamp(min=1e-10)), # avoid log(0)
|
||||
F.softmax(student_logits, dim=-1),
|
||||
reduction='none',
|
||||
log_target=False
|
||||
).sum(dim=-1)/torch.sum(mask.view(-1), dim=0)
|
||||
else:
|
||||
raise ValueError(f"Unsupported distillation type: {self.distillation_type}. Use 'forward_kld' or 'reverse_kld'")
|
||||
|
||||
return (loss * mask).sum() / mask.sum()
|
||||
|
||||
|
||||
@staticmethod
|
||||
def _shift_tensor_right(inputs: torch.Tensor, labels: torch.Tensor, pad_value: float = 0.0):
|
||||
batch_size, seqlen, vocab_size = inputs.shape
|
||||
device = inputs.device
|
||||
labels_ne = labels != -100
|
||||
shift_distances = torch.argmax(labels_ne.int(), dim=1)
|
||||
idx = torch.arange(seqlen, device=device).unsqueeze(0).expand(batch_size, seqlen)
|
||||
shifted_idx = idx - shift_distances.unsqueeze(1)
|
||||
mask = shifted_idx >= 0
|
||||
shifted_idx = shifted_idx.clamp(min=0)
|
||||
inputs_flat = inputs.view(batch_size, seqlen, vocab_size)
|
||||
shifted_idx = shifted_idx.unsqueeze(2).expand(-1, -1, vocab_size)
|
||||
gathered = torch.gather(inputs_flat, 1, shifted_idx)
|
||||
mask = mask.unsqueeze(2).expand(-1, -1, vocab_size)
|
||||
return torch.where(mask, gathered, torch.full_like(gathered, pad_value))
|
||||
|
||||
|
||||
def compute_loss(self, model: PreTrainedModel, inputs: Dict[str, torch.Tensor], return_outputs=False, num_items_in_batch=None):
|
||||
outputs = model(**inputs)
|
||||
lm_loss = outputs.loss
|
||||
if self.logits_dir:
|
||||
teacher_logits = self._load_teacher_logits(
|
||||
batch_size=inputs['input_ids'].size(0),
|
||||
it=self.state.global_step,
|
||||
dp_rank=torch.distributed.get_rank() if torch.distributed.is_initialized() else 0,
|
||||
device=model.device,
|
||||
no_model_batch={'label': inputs.get('labels', None)}
|
||||
)
|
||||
distil_loss = self._compute_white_box_distillation_loss(
|
||||
student_logits=outputs.logits,
|
||||
teacher_logits=teacher_logits,
|
||||
labels=inputs.get('labels', None)
|
||||
)
|
||||
total_loss = (1 - self.kd_ratio) * lm_loss + self.kd_ratio * distil_loss
|
||||
else:
|
||||
total_loss = lm_loss
|
||||
return (total_loss, outputs) if return_outputs else total_loss
|
||||
|
||||
def train(config):
|
||||
dataset = load_dataset("json", data_files=config["dataset"]["labeled_path"])
|
||||
dataset = dataset.shuffle(seed=config["dataset"]["seed"])["train"]
|
||||
with open(config["dataset"]["labeled_path"], "r") as f:
|
||||
raw_data = json.load(f)
|
||||
dataset = MMDataset(raw_data)
|
||||
student_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
||||
config["models"]["student"],
|
||||
trust_remote_code=True
|
||||
)
|
||||
processor = Qwen2_5_VLProcessor.from_pretrained(config["models"]["student"])
|
||||
|
||||
def collate_fn(examples):
|
||||
texts = []
|
||||
images = []
|
||||
for example in examples:
|
||||
chat = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "image","image": example["image"]
|
||||
},
|
||||
{
|
||||
"type": "text","text": example["instruction"]
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": example["output"]
|
||||
}
|
||||
]
|
||||
text = processor.apply_chat_template(chat, tokenize=False)
|
||||
texts.append(text)
|
||||
image, _ = process_vision_info(chat)
|
||||
images.append(image)
|
||||
|
||||
batch = processor(text=texts, images=images, return_tensors="pt", padding=True)
|
||||
labels = batch["input_ids"].clone()
|
||||
labels[labels == processor.tokenizer.pad_token_id] = -100
|
||||
|
||||
if isinstance(processor, Qwen2_5_VLProcessor):
|
||||
image_tokens = [151652, 151653, 151655]
|
||||
else:
|
||||
image_tokens = [processor.tokenizer.convert_tokens_to_ids(processor.image_token)]
|
||||
|
||||
for image_token_id in image_tokens:
|
||||
labels[labels == image_token_id] = -100
|
||||
batch["labels"] = labels
|
||||
return batch
|
||||
|
||||
training_arguments = SFTConfig(**config["training"])
|
||||
training_arguments.gradient_checkpointing_kwargs = dict(use_reentrant=False)
|
||||
training_arguments.remove_unused_columns = False
|
||||
training_arguments.dataset_kwargs = {"skip_prepare_dataset": True}
|
||||
|
||||
def collate_fn(examples):
|
||||
texts = []
|
||||
images = []
|
||||
for example in examples:
|
||||
|
||||
chat = example
|
||||
text = processor.apply_chat_template(chat, tokenize=False)
|
||||
texts.append(text)
|
||||
|
||||
image, _ = process_vision_info(example)
|
||||
images.append(image)
|
||||
|
||||
batch = processor(text=texts, images=images, return_tensors="pt", padding=True)
|
||||
labels = batch["input_ids"].clone()
|
||||
labels[labels == processor.tokenizer.pad_token_id] = -100
|
||||
|
||||
if isinstance(processor, Qwen2_5_VLProcessor):
|
||||
image_tokens = [151652, 151653, 151655]
|
||||
else:
|
||||
image_tokens = [processor.tokenizer.convert_tokens_to_ids(processor.image_token)]
|
||||
|
||||
for image_token_id in image_tokens:
|
||||
labels[labels == image_token_id] = -100
|
||||
batch["labels"] = labels
|
||||
return batch
|
||||
|
||||
trainer = SFTTrainer(
|
||||
model=student_model,
|
||||
data_collator=collate_fn,
|
||||
processing_class=processor.tokenizer,
|
||||
args=training_arguments,
|
||||
train_dataset=dataset
|
||||
)
|
||||
try:
|
||||
job_type = config["job_type"]
|
||||
if "mmkd_black_box" in job_type:
|
||||
|
||||
|
||||
trainer = SFTTrainer(
|
||||
model=student_model,
|
||||
data_collator=collate_fn,
|
||||
processing_class=processor.tokenizer,
|
||||
args=training_arguments,
|
||||
train_dataset=dataset
|
||||
)
|
||||
elif "mmkd_white_box" in job_type:
|
||||
teacher_vocab_size=json.load(open(os.path.join(config["models"]["teacher"], 'config.json')))['vocab_size']
|
||||
trainer = DistillSFTTrainer(
|
||||
logits_dir=config["dataset"]["logits_path"],
|
||||
data_collator=collate_fn,
|
||||
teacher_vocab_size=teacher_vocab_size,
|
||||
kd_ratio=config["distillation"]["kd_ratio"],
|
||||
max_seq_length=config["distillation"]["max_seq_length"],
|
||||
distillation_type=config["distillation"].get("distillation_type", "forward_kld"),
|
||||
model=student_model,
|
||||
processing_class=processor.tokenizer,
|
||||
args=training_arguments,
|
||||
train_dataset=dataset,
|
||||
)
|
||||
else:
|
||||
logging.error(f"Invalid job type: {job_type}")
|
||||
raise ValueError(f"Invalid job type: {job_type}")
|
||||
except ValueError as e:
|
||||
logging.error(f"Training job terminated: {e}")
|
||||
return
|
||||
|
||||
trainer.train()
|
||||
trainer.save_model(config["training"]["output_dir"])
|
||||
|
Reference in New Issue
Block a user