Files
distillation/easydistill/mmkd/infer.py

294 lines
10 KiB
Python
Raw Normal View History

2025-06-24 19:47:16 +08:00
# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
2025-07-24 11:27:11 +08:00
import json, jsonlines
import math
2025-06-24 19:47:16 +08:00
import argparse
import logging
from tqdm import tqdm
from openai import OpenAI
2025-07-24 11:27:11 +08:00
import torch
from transformers import AutoProcessor, AutoTokenizer
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info
2025-06-24 19:47:16 +08:00
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
def read_json_field(filename):
try:
with open(filename, 'r') as file:
data = json.load(file)
2025-07-24 11:27:11 +08:00
return data
2025-06-24 19:47:16 +08:00
except FileNotFoundError:
logging.error("The file was not found.")
except json.JSONDecodeError:
logging.error("There was an error decoding the JSON file.")
except Exception as e:
logging.error(f"An error occurred: {e}")
def write_data_to_json_file(data, file_path):
try:
with open(file_path, 'w') as file:
json.dump(data, file, ensure_ascii=False, indent=4)
logging.info(f"Data successfully written to {file_path}")
except Exception as e:
logging.error(f"An error occurred: {e}")
2025-07-24 11:27:11 +08:00
def load_tokenizer_and_vllm(config, eos_token=None):
model_path = config["models"]["teacher"]
logging.info(f"Loading processor & vLLM model from {model_path}")
# 1. Use AutoProcessor, which integrates the tokenizer, image_processor, and video_processor
2025-07-24 11:27:11 +08:00
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
# 2. eos / pad token 处理(与官方示例保持一致,不再显式改 pad_token
if eos_token:
eos_token_id = processor.tokenizer.convert_tokens_to_ids(eos_token)
logging.info(f"eos_token {eos_token} from user input")
elif hasattr(processor.tokenizer, "eos_token_id") and processor.tokenizer.eos_token_id is not None:
eos_token_id = processor.tokenizer.eos_token_id
eos_token = processor.tokenizer.convert_ids_to_tokens(eos_token_id)
logging.info(f"Initial eos_token_id {eos_token_id} from tokenizer")
else:
raise ValueError("No available eos_token or eos_token_id.")
# 3. 设置 tokenizer 的 eos 相关字段pad_token 保持 None由 vLLM 自动处理)
try:
processor.tokenizer.eos_token = eos_token
processor.tokenizer.eos_token_id = eos_token_id
except Exception as e:
logging.warning(f"[WARNING] Cannot set eos_token: {e}")
logging.info(
f"processor.tokenizer eos_token: {processor.tokenizer.eos_token}, "
f"eos_token_id: {processor.tokenizer.eos_token_id}"
)
num_gpus = torch.cuda.device_count()
llm = LLM(
model=model_path,
tensor_parallel_size=num_gpus,
trust_remote_code=True,
limit_mm_per_prompt={"image": 10, "video": 10}, # 可按需调整
# 其余超参沿用原 config
gpu_memory_utilization=config["inference"].get("gpu_memory_utilization", 0.9),
max_model_len=config["inference"].get("max_model_len", 4096),
enforce_eager=config["inference"].get("enforce_eager", False),
)
logging.info("Qwen2.5-VL vLLM model loaded successfully")
#return processor, llm
return processor, llm
def generate_teacher_response_batch(processor, llm, data_list, config, batch_size=32):
outcomes = []
sampling_params = SamplingParams(
n = 1,
top_k = 1,
temperature=config["inference"]["temperature"],
seed = config["inference"]["seed"],
max_tokens = config["inference"]["max_new_tokens"],
)
batches = [data_list[i:i + batch_size] for i in range(0, len(data_list), batch_size)]
for batch in tqdm(batches, desc="Generating responses"):
new_batch = []
batch_outcomes = []
for sample in batch:
batch_outcomes.append(sample)
prompt = processor.apply_chat_template(
sample,
tokenize=False,
add_generation_prompt=True,
)
image_inputs, video_inputs = process_vision_info(sample)
mm_data = {}
if image_inputs is not None:
mm_data["image"] = image_inputs
sample_inputs = {
"prompt": prompt,
"multi_modal_data": mm_data,
}
new_batch.append(sample_inputs)
outputs = llm.generate(new_batch, sampling_params=sampling_params)
for b in range(len(batch_outcomes)):
generated_text = outputs[b].outputs[0].text
out={
"role": "assistant",
"content": [
{
"type": "text",
"text": generated_text,
}
],
}
batch_outcomes[b].append(out)
outcomes.extend(batch_outcomes)
write_data_to_json_file(outcomes, config["dataset"]["labeled_path"])
def generate_teacher_logits_batch(processor, llm, data_list, config, batch_size=32):
outcomes = []
sampling_params = SamplingParams(
n = 1,
top_k = 1,
temperature=config["inference"]["temperature"],
seed = config["inference"]["seed"],
skip_special_tokens=False,
max_tokens = config["inference"]["max_new_tokens"],
logprobs=config["inference"]["top_logits_num"],
)
batches = [data_list[i:i + batch_size] for i in range(0, len(data_list), batch_size)]
logits=[]
for batch in tqdm(batches, desc="Generating responses"):
new_batch = []
batch_outcomes = []
for sample in batch:
batch_outcomes.append(sample)
prompt = processor.apply_chat_template(
sample,
tokenize=False,
add_generation_prompt=True,
)
image_inputs, video_inputs = process_vision_info(sample)
mm_data = {}
if image_inputs is not None:
mm_data["image"] = image_inputs
sample_inputs = {
"prompt": prompt,
"multi_modal_data": mm_data,
}
new_batch.append(sample_inputs)
outputs = llm.generate(new_batch, sampling_params=sampling_params)
logits+=[output.outputs[0].logprobs for output in outputs]
for b in range(len(batch_outcomes)):
generated_text = outputs[b].outputs[0].text
out={
"role": "assistant",
"content": [
{
"type": "text",
"text": generated_text,
}
],
}
batch_outcomes[b].append(out)
outcomes.extend(batch_outcomes)
for logit in logits:
for pos in logit:
for k,v in pos.items():
pos[k]=math.exp(v.logprob)
with jsonlines.open(config["dataset"]["logits_path"], mode='a') as writer:
for row in logits:
#for item in row:
writer.write(row)
write_data_to_json_file(outcomes, config["dataset"]["labeled_path"])
2025-06-24 19:47:16 +08:00
def generate_teacher_response_api(data_list, config):
client = OpenAI(
api_key = config["inference"]["api_key"],
base_url = config["inference"]["base_url"]
)
models = client.models.list()
model = models.data[0].id
logging.info(model)
system_prompt = config["inference"]["system_prompt"]
if system_prompt == "":
system_prompt = "You are a helpful assistant."
outcomes = []
for text, image in tqdm(data_list, desc="Call remote model and generating responses"):
messages = [
{
"role": "system",
"content": system_prompt
},
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": image
},
},
{
"type": "text",
"text": text
}
]
}
]
completion = client.chat.completions.create(
messages = messages,
model = model,
max_completion_tokens = config["inference"]["max_new_tokens"]
)
result = completion.choices[0].message.content
outcomes.append({'instruction': text, 'image': image, 'output': result})
write_data_to_json_file(outcomes, config["dataset"]["labeled_path"])
def infer_with_teacher_model(config):
logging.info('Generating distillation data from the teacher model!')
data_list = read_json_field(config["dataset"]["instruction_path"])
2025-07-24 11:27:11 +08:00
2025-06-24 19:47:16 +08:00
try:
job_type = config["job_type"]
if job_type == "mmkd_black_box_api":
generate_teacher_response_api(data_list, config)
2025-07-24 11:27:11 +08:00
elif job_type == "mmkd_black_box_local":
tokenizer, llm = load_tokenizer_and_vllm(config)
generate_teacher_response_batch(tokenizer, llm, data_list, config)
elif job_type == "mmkd_white_box":
tokenizer, llm = load_tokenizer_and_vllm(config)
generate_teacher_logits_batch(tokenizer, llm, data_list, config)
2025-06-24 19:47:16 +08:00
else:
logging.error(f"Invalid job type: {job_type}")
raise ValueError(f"Invalid job type: {job_type}")
except ValueError as e:
logging.error(f"Training job terminated: {e}")
return
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, required=True, help='path to the json config file')
args = parser.parse_args()
config = json.load(open(args.config))
infer_with_teacher_model(config)
if __name__ == "__main__":
main()