111 lines
3.9 KiB
Python
111 lines
3.9 KiB
Python
![]() |
|
||
|
# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
|
||
|
import json
|
||
|
import argparse
|
||
|
import logging
|
||
|
import os
|
||
|
import random
|
||
|
from jinja2 import Environment, BaseLoader, FileSystemLoader
|
||
|
from datasets import load_dataset, Dataset
|
||
|
from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer
|
||
|
from trl import GRPOConfig, GRPOTrainer
|
||
|
|
||
|
|
||
|
def process_dataset(dataset_path, dataset_seed, env, template, train_ratio):
|
||
|
examples = []
|
||
|
try:
|
||
|
with open(dataset_path, 'r') as file:
|
||
|
examples = json.load(file)
|
||
|
except FileNotFoundError:
|
||
|
print(f"Error: The file '{dataset_path}' was not found.")
|
||
|
except json.JSONDecodeError:
|
||
|
print(f"Error: The file '{dataset_path}' is not a valid JSON file.")
|
||
|
except Exception as e:
|
||
|
print(f"An unexpected error occurred: {e}")
|
||
|
|
||
|
output_dataset = []
|
||
|
# use chat template
|
||
|
for i in range(len(examples)):
|
||
|
try:
|
||
|
message = {"content": examples[i]["prompt"]}
|
||
|
rendered = template.render(message=message, add_generation_prompt=True, add_output=False)
|
||
|
sample = {"prompt": rendered}
|
||
|
output_dataset.append(sample)
|
||
|
except:
|
||
|
logging.warning(f"Error processing sample.")
|
||
|
|
||
|
random.shuffle(output_dataset)
|
||
|
random.seed(dataset_seed)
|
||
|
split_index = int(len(output_dataset) * train_ratio)
|
||
|
train_list = output_dataset[:split_index]
|
||
|
eval_list = output_dataset[split_index:]
|
||
|
|
||
|
return Dataset.from_list(train_list), Dataset.from_list(eval_list)
|
||
|
|
||
|
|
||
|
def train(config):
|
||
|
dataset_path = config["dataset"]["instruction_path"]
|
||
|
dataset_seed = config["dataset"]["seed"]
|
||
|
train_ratio = config["dataset"]["train_ratio"]
|
||
|
|
||
|
full_path = config["dataset"]["template"]
|
||
|
template_dir = os.path.dirname(full_path)
|
||
|
template_file = os.path.basename(full_path)
|
||
|
env = Environment(loader=FileSystemLoader(template_dir))
|
||
|
template = env.get_template(template_file)
|
||
|
|
||
|
tokenizer = AutoTokenizer.from_pretrained(
|
||
|
config["models"]["student"],
|
||
|
trust_remote_code=True
|
||
|
)
|
||
|
train_dataset, eval_dataset = process_dataset(dataset_path, dataset_seed, env, template, train_ratio)
|
||
|
print(train_dataset)
|
||
|
print(eval_dataset)
|
||
|
|
||
|
reward_model_path = config["models"]["reward"]
|
||
|
sft_model_path = config["models"]["student"]
|
||
|
reward_model = AutoModelForSequenceClassification.from_pretrained(
|
||
|
reward_model_path, trust_remote_code=True, num_labels=1
|
||
|
)
|
||
|
sft_model = AutoModelForCausalLM.from_pretrained(
|
||
|
sft_model_path, trust_remote_code=True
|
||
|
)
|
||
|
|
||
|
training_arguments = GRPOConfig(**config["training"])
|
||
|
trainer = GRPOTrainer(
|
||
|
args=training_arguments,
|
||
|
processing_class=tokenizer,
|
||
|
model=sft_model,
|
||
|
reward_funcs=reward_model,
|
||
|
train_dataset=train_dataset,
|
||
|
eval_dataset=eval_dataset
|
||
|
)
|
||
|
trainer.train()
|
||
|
trainer.save_model(config["training"]["output_dir"])
|
||
|
tokenizer.save_pretrained(config["training"]["output_dir"])
|
||
|
|
||
|
|
||
|
def main():
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument('--config', type=str, required=True, help='path to the json config file')
|
||
|
args = parser.parse_args()
|
||
|
config = json.load(open(args.config))
|
||
|
train(config)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main()
|