Files
distillation/easydistill/synthesis/utils.py

85 lines
3.5 KiB
Python
Raw Normal View History

2025-05-27 18:55:46 +08:00
# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import json
import torch
import logging
from vllm import LLM
from transformers import AutoTokenizer
def read_json_field(filename, field_name='instruction'):
try:
with open(filename, 'r') as file:
data = json.load(file)
output_fields = []
for item in data:
if field_name in item:
output_fields.append(item[field_name])
return output_fields
except FileNotFoundError:
logging.error("The file was not found.")
except json.JSONDecodeError:
logging.error("There was an error decoding the JSON file.")
except Exception as e:
logging.error(f"An error occurred: {e}")
def write_data_to_json_file(data, file_path):
try:
with open(file_path, 'w') as file:
json.dump(data, file, ensure_ascii=False, indent=4)
logging.info(f"Data successfully written to {file_path}")
except Exception as e:
logging.error(f"An error occurred: {e}")
def load_tokenizer_and_vllm(config, eos_token=None):
teacher_model_path = config["models"]["teacher"]
logging.info(f"Loading ckpt and tokenizer: {teacher_model_path}")
tokenizer = AutoTokenizer.from_pretrained(teacher_model_path, trust_remote_code=True)
tokenizer.padding_side = "left"
if eos_token:
eos_token_id = tokenizer.convert_tokens_to_ids(eos_token)
logging.info(f"eos_token {eos_token} from user input")
elif hasattr(tokenizer, "eos_token_id") and tokenizer.eos_token_id:
logging.info(f"Initial eos_token_id {tokenizer.eos_token_id} from tokenizer")
eos_token_id = tokenizer.eos_token_id
eos_token = tokenizer.convert_ids_to_tokens(eos_token_id)
else:
raise ValueError("No available eos_token or eos_token_id.")
try:
tokenizer.eos_token = eos_token
tokenizer.eos_token_id = eos_token_id
tokenizer.pad_token = eos_token
tokenizer.pad_token_id = eos_token_id
except:
logging.info(f"[WARNING] Cannot set tokenizer.eos_token")
logging.info(f"tokenizer's eos_token: {tokenizer.eos_token}, pad_token: {tokenizer.pad_token}")
logging.info(f"tokenizer's eos_token_id: {tokenizer.eos_token_id}, pad_token_id: {tokenizer.pad_token_id}")
num_gpus = torch.cuda.device_count()
llm = LLM(
model=teacher_model_path,
tensor_parallel_size=num_gpus,
enable_chunked_prefill=config["inference"]["enable_chunked_prefill"],
gpu_memory_utilization=config["inference"]["gpu_memory_utilization"],
trust_remote_code=config["inference"]["trust_remote_code"],
dtype=torch.bfloat16,
enforce_eager=config["inference"]["enforce_eager"],
max_model_len=config["inference"]["max_model_len"],
)
logging.info("vLLM model loaded successfully")
return tokenizer, llm