2025-06-24 19:47:16 +08:00
|
|
|
|
|
|
|
|
|
# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved.
|
|
|
|
|
#
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
|
#
|
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
#
|
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
# ==============================================================================
|
|
|
|
|
|
2025-07-24 11:27:11 +08:00
|
|
|
|
import json, jsonlines
|
|
|
|
|
import math
|
2025-06-24 19:47:16 +08:00
|
|
|
|
import argparse
|
|
|
|
|
import logging
|
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
from openai import OpenAI
|
2025-07-24 11:27:11 +08:00
|
|
|
|
import torch
|
|
|
|
|
from transformers import AutoProcessor, AutoTokenizer
|
|
|
|
|
from vllm import LLM, SamplingParams
|
|
|
|
|
from qwen_vl_utils import process_vision_info
|
2025-06-24 19:47:16 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def read_json_field(filename):
|
|
|
|
|
try:
|
|
|
|
|
with open(filename, 'r') as file:
|
|
|
|
|
data = json.load(file)
|
2025-07-24 11:27:11 +08:00
|
|
|
|
return data
|
2025-06-24 19:47:16 +08:00
|
|
|
|
except FileNotFoundError:
|
|
|
|
|
logging.error("The file was not found.")
|
|
|
|
|
except json.JSONDecodeError:
|
|
|
|
|
logging.error("There was an error decoding the JSON file.")
|
|
|
|
|
except Exception as e:
|
|
|
|
|
logging.error(f"An error occurred: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def write_data_to_json_file(data, file_path):
|
|
|
|
|
try:
|
|
|
|
|
with open(file_path, 'w') as file:
|
|
|
|
|
json.dump(data, file, ensure_ascii=False, indent=4)
|
|
|
|
|
logging.info(f"Data successfully written to {file_path}")
|
|
|
|
|
except Exception as e:
|
|
|
|
|
logging.error(f"An error occurred: {e}")
|
|
|
|
|
|
2025-07-24 11:27:11 +08:00
|
|
|
|
def load_tokenizer_and_vllm(config, eos_token=None):
|
|
|
|
|
|
|
|
|
|
model_path = config["models"]["teacher"]
|
|
|
|
|
logging.info(f"Loading processor & vLLM model from {model_path}")
|
|
|
|
|
|
|
|
|
|
# 1. 统一用 AutoProcessor(已整合 tokenizer + image_processor + video_processor)
|
|
|
|
|
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
# 2. eos / pad token 处理(与官方示例保持一致,不再显式改 pad_token)
|
|
|
|
|
if eos_token:
|
|
|
|
|
eos_token_id = processor.tokenizer.convert_tokens_to_ids(eos_token)
|
|
|
|
|
logging.info(f"eos_token {eos_token} from user input")
|
|
|
|
|
elif hasattr(processor.tokenizer, "eos_token_id") and processor.tokenizer.eos_token_id is not None:
|
|
|
|
|
eos_token_id = processor.tokenizer.eos_token_id
|
|
|
|
|
eos_token = processor.tokenizer.convert_ids_to_tokens(eos_token_id)
|
|
|
|
|
logging.info(f"Initial eos_token_id {eos_token_id} from tokenizer")
|
|
|
|
|
else:
|
|
|
|
|
raise ValueError("No available eos_token or eos_token_id.")
|
|
|
|
|
|
|
|
|
|
# 3. 设置 tokenizer 的 eos 相关字段(pad_token 保持 None,由 vLLM 自动处理)
|
|
|
|
|
try:
|
|
|
|
|
processor.tokenizer.eos_token = eos_token
|
|
|
|
|
processor.tokenizer.eos_token_id = eos_token_id
|
|
|
|
|
except Exception as e:
|
|
|
|
|
logging.warning(f"[WARNING] Cannot set eos_token: {e}")
|
|
|
|
|
|
|
|
|
|
logging.info(
|
|
|
|
|
f"processor.tokenizer eos_token: {processor.tokenizer.eos_token}, "
|
|
|
|
|
f"eos_token_id: {processor.tokenizer.eos_token_id}"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
num_gpus = torch.cuda.device_count()
|
|
|
|
|
llm = LLM(
|
|
|
|
|
model=model_path,
|
|
|
|
|
tensor_parallel_size=num_gpus,
|
|
|
|
|
trust_remote_code=True,
|
|
|
|
|
limit_mm_per_prompt={"image": 10, "video": 10}, # 可按需调整
|
|
|
|
|
# 其余超参沿用原 config
|
|
|
|
|
gpu_memory_utilization=config["inference"].get("gpu_memory_utilization", 0.9),
|
|
|
|
|
max_model_len=config["inference"].get("max_model_len", 4096),
|
|
|
|
|
enforce_eager=config["inference"].get("enforce_eager", False),
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
logging.info("Qwen2.5-VL vLLM model loaded successfully")
|
|
|
|
|
#return processor, llm
|
|
|
|
|
|
|
|
|
|
return processor, llm
|
|
|
|
|
|
|
|
|
|
def generate_teacher_response_batch(processor, llm, data_list, config, batch_size=32):
|
|
|
|
|
|
|
|
|
|
outcomes = []
|
|
|
|
|
sampling_params = SamplingParams(
|
|
|
|
|
n = 1,
|
|
|
|
|
top_k = 1,
|
|
|
|
|
temperature=config["inference"]["temperature"],
|
|
|
|
|
seed = config["inference"]["seed"],
|
|
|
|
|
max_tokens = config["inference"]["max_new_tokens"],
|
|
|
|
|
)
|
|
|
|
|
batches = [data_list[i:i + batch_size] for i in range(0, len(data_list), batch_size)]
|
|
|
|
|
for batch in tqdm(batches, desc="Generating responses"):
|
|
|
|
|
new_batch = []
|
|
|
|
|
batch_outcomes = []
|
|
|
|
|
for sample in batch:
|
|
|
|
|
batch_outcomes.append(sample)
|
|
|
|
|
prompt = processor.apply_chat_template(
|
|
|
|
|
sample,
|
|
|
|
|
tokenize=False,
|
|
|
|
|
add_generation_prompt=True,
|
|
|
|
|
)
|
|
|
|
|
image_inputs, video_inputs = process_vision_info(sample)
|
|
|
|
|
|
|
|
|
|
mm_data = {}
|
|
|
|
|
if image_inputs is not None:
|
|
|
|
|
mm_data["image"] = image_inputs
|
|
|
|
|
|
|
|
|
|
sample_inputs = {
|
|
|
|
|
"prompt": prompt,
|
|
|
|
|
"multi_modal_data": mm_data,
|
|
|
|
|
}
|
|
|
|
|
new_batch.append(sample_inputs)
|
|
|
|
|
outputs = llm.generate(new_batch, sampling_params=sampling_params)
|
|
|
|
|
for b in range(len(batch_outcomes)):
|
|
|
|
|
|
|
|
|
|
generated_text = outputs[b].outputs[0].text
|
|
|
|
|
out={
|
|
|
|
|
"role": "assistant",
|
|
|
|
|
"content": [
|
|
|
|
|
{
|
|
|
|
|
"type": "text",
|
|
|
|
|
"text": generated_text,
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
}
|
|
|
|
|
batch_outcomes[b].append(out)
|
|
|
|
|
outcomes.extend(batch_outcomes)
|
|
|
|
|
write_data_to_json_file(outcomes, config["dataset"]["labeled_path"])
|
|
|
|
|
|
|
|
|
|
def generate_teacher_logits_batch(processor, llm, data_list, config, batch_size=32):
|
|
|
|
|
|
|
|
|
|
outcomes = []
|
|
|
|
|
sampling_params = SamplingParams(
|
|
|
|
|
n = 1,
|
|
|
|
|
top_k = 1,
|
|
|
|
|
temperature=config["inference"]["temperature"],
|
|
|
|
|
seed = config["inference"]["seed"],
|
|
|
|
|
skip_special_tokens=False,
|
|
|
|
|
max_tokens = config["inference"]["max_new_tokens"],
|
|
|
|
|
logprobs=config["inference"]["top_logits_num"],
|
|
|
|
|
)
|
|
|
|
|
batches = [data_list[i:i + batch_size] for i in range(0, len(data_list), batch_size)]
|
|
|
|
|
logits=[]
|
|
|
|
|
for batch in tqdm(batches, desc="Generating responses"):
|
|
|
|
|
new_batch = []
|
|
|
|
|
batch_outcomes = []
|
|
|
|
|
for sample in batch:
|
|
|
|
|
batch_outcomes.append(sample)
|
|
|
|
|
prompt = processor.apply_chat_template(
|
|
|
|
|
sample,
|
|
|
|
|
tokenize=False,
|
|
|
|
|
add_generation_prompt=True,
|
|
|
|
|
)
|
|
|
|
|
image_inputs, video_inputs = process_vision_info(sample)
|
|
|
|
|
|
|
|
|
|
mm_data = {}
|
|
|
|
|
if image_inputs is not None:
|
|
|
|
|
mm_data["image"] = image_inputs
|
|
|
|
|
|
|
|
|
|
sample_inputs = {
|
|
|
|
|
"prompt": prompt,
|
|
|
|
|
"multi_modal_data": mm_data,
|
|
|
|
|
}
|
|
|
|
|
new_batch.append(sample_inputs)
|
|
|
|
|
outputs = llm.generate(new_batch, sampling_params=sampling_params)
|
|
|
|
|
logits+=[output.outputs[0].logprobs for output in outputs]
|
|
|
|
|
|
|
|
|
|
for b in range(len(batch_outcomes)):
|
|
|
|
|
|
|
|
|
|
generated_text = outputs[b].outputs[0].text
|
|
|
|
|
out={
|
|
|
|
|
"role": "assistant",
|
|
|
|
|
"content": [
|
|
|
|
|
{
|
|
|
|
|
"type": "text",
|
|
|
|
|
"text": generated_text,
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
}
|
|
|
|
|
batch_outcomes[b].append(out)
|
|
|
|
|
outcomes.extend(batch_outcomes)
|
|
|
|
|
|
|
|
|
|
for logit in logits:
|
|
|
|
|
for pos in logit:
|
|
|
|
|
for k,v in pos.items():
|
|
|
|
|
pos[k]=math.exp(v.logprob)
|
|
|
|
|
|
|
|
|
|
with jsonlines.open(config["dataset"]["logits_path"], mode='a') as writer:
|
|
|
|
|
for row in logits:
|
|
|
|
|
#for item in row:
|
|
|
|
|
writer.write(row)
|
|
|
|
|
|
|
|
|
|
write_data_to_json_file(outcomes, config["dataset"]["labeled_path"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2025-06-24 19:47:16 +08:00
|
|
|
|
|
|
|
|
|
def generate_teacher_response_api(data_list, config):
|
|
|
|
|
client = OpenAI(
|
|
|
|
|
api_key = config["inference"]["api_key"],
|
|
|
|
|
base_url = config["inference"]["base_url"]
|
|
|
|
|
)
|
|
|
|
|
models = client.models.list()
|
|
|
|
|
model = models.data[0].id
|
|
|
|
|
logging.info(model)
|
|
|
|
|
system_prompt = config["inference"]["system_prompt"]
|
|
|
|
|
if system_prompt == "":
|
|
|
|
|
system_prompt = "You are a helpful assistant."
|
|
|
|
|
outcomes = []
|
|
|
|
|
for text, image in tqdm(data_list, desc="Call remote model and generating responses"):
|
|
|
|
|
messages = [
|
|
|
|
|
{
|
|
|
|
|
"role": "system",
|
|
|
|
|
"content": system_prompt
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"role": "user",
|
|
|
|
|
"content": [
|
|
|
|
|
{
|
|
|
|
|
"type": "image_url",
|
|
|
|
|
"image_url": {
|
|
|
|
|
"url": image
|
|
|
|
|
},
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"type": "text",
|
|
|
|
|
"text": text
|
|
|
|
|
}
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
]
|
|
|
|
|
completion = client.chat.completions.create(
|
|
|
|
|
messages = messages,
|
|
|
|
|
model = model,
|
|
|
|
|
max_completion_tokens = config["inference"]["max_new_tokens"]
|
|
|
|
|
)
|
|
|
|
|
result = completion.choices[0].message.content
|
|
|
|
|
outcomes.append({'instruction': text, 'image': image, 'output': result})
|
|
|
|
|
write_data_to_json_file(outcomes, config["dataset"]["labeled_path"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def infer_with_teacher_model(config):
|
|
|
|
|
logging.info('Generating distillation data from the teacher model!')
|
|
|
|
|
data_list = read_json_field(config["dataset"]["instruction_path"])
|
2025-07-24 11:27:11 +08:00
|
|
|
|
|
2025-06-24 19:47:16 +08:00
|
|
|
|
try:
|
|
|
|
|
job_type = config["job_type"]
|
|
|
|
|
if job_type == "mmkd_black_box_api":
|
|
|
|
|
generate_teacher_response_api(data_list, config)
|
2025-07-24 11:27:11 +08:00
|
|
|
|
elif job_type == "mmkd_black_box_local":
|
|
|
|
|
tokenizer, llm = load_tokenizer_and_vllm(config)
|
|
|
|
|
generate_teacher_response_batch(tokenizer, llm, data_list, config)
|
|
|
|
|
elif job_type == "mmkd_white_box":
|
|
|
|
|
|
|
|
|
|
tokenizer, llm = load_tokenizer_and_vllm(config)
|
|
|
|
|
generate_teacher_logits_batch(tokenizer, llm, data_list, config)
|
2025-06-24 19:47:16 +08:00
|
|
|
|
else:
|
|
|
|
|
logging.error(f"Invalid job type: {job_type}")
|
|
|
|
|
raise ValueError(f"Invalid job type: {job_type}")
|
|
|
|
|
except ValueError as e:
|
|
|
|
|
logging.error(f"Training job terminated: {e}")
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
|
parser.add_argument('--config', type=str, required=True, help='path to the json config file')
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
config = json.load(open(args.config))
|
|
|
|
|
infer_with_teacher_model(config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
main()
|