Files
distillation/easydistill/mmkd/train.py

105 lines
3.7 KiB
Python
Raw Normal View History

2025-06-24 19:47:16 +08:00
# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import json
import argparse
import logging
from datasets import load_dataset, Dataset
from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLProcessor
from qwen_vl_utils import process_vision_info
from trl import SFTTrainer, SFTConfig
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
def train(config):
dataset = load_dataset("json", data_files=config["dataset"]["labeled_path"])
dataset = dataset.shuffle(seed=config["dataset"]["seed"])["train"]
student_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
config["models"]["student"],
trust_remote_code=True
)
processor = Qwen2_5_VLProcessor.from_pretrained(config["models"]["student"])
def collate_fn(examples):
texts = []
images = []
for example in examples:
chat = [
{
"role": "user",
"content": [
{
"type": "image","image": example["image"]
},
{
"type": "text","text": example["instruction"]
}
]
},
{
"role": "assistant",
"content": example["output"]
}
]
text = processor.apply_chat_template(chat, tokenize=False)
texts.append(text)
image, _ = process_vision_info(chat)
images.append(image)
batch = processor(text=texts, images=images, return_tensors="pt", padding=True)
labels = batch["input_ids"].clone()
labels[labels == processor.tokenizer.pad_token_id] = -100
if isinstance(processor, Qwen2_5_VLProcessor):
image_tokens = [151652, 151653, 151655]
else:
image_tokens = [processor.tokenizer.convert_tokens_to_ids(processor.image_token)]
for image_token_id in image_tokens:
labels[labels == image_token_id] = -100
batch["labels"] = labels
return batch
training_arguments = SFTConfig(**config["training"])
training_arguments.gradient_checkpointing_kwargs = dict(use_reentrant=False)
training_arguments.remove_unused_columns = False
training_arguments.dataset_kwargs = {"skip_prepare_dataset": True}
trainer = SFTTrainer(
model=student_model,
data_collator=collate_fn,
processing_class=processor.tokenizer,
args=training_arguments,
train_dataset=dataset
)
trainer.train()
trainer.save_model(config["training"]["output_dir"])
processor.tokenizer.save_pretrained(config["training"]["output_dir"])
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, required=True, help='path to the json config file')
args = parser.parse_args()
config = json.load(open(args.config))
train(config)
if __name__ == "__main__":
main()