Files
distillation/recipes/distilqwen_series/distillqwen2/dpo_student_infer_only.py

105 lines
3.6 KiB
Python
Raw Normal View History

2025-05-27 18:55:46 +08:00
# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import json
import argparse
import logging
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from tqdm import tqdm
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
def read_json_field(filename):
try:
with open(filename, 'r') as file:
data = json.load(file)
output = []
for item in data:
instruction = item["instruction"]
output = item["output"]
output.append({"prompt": instruction, "chosen": output})
return output
except FileNotFoundError:
logging.error("The file was not found.")
except json.JSONDecodeError:
logging.error("There was an error decoding the JSON file.")
except Exception as e:
logging.error(f"An error occurred: {e}")
def write_data_to_json_file(data, file_path):
try:
with open(file_path, 'w') as file:
json.dump(data, file, ensure_ascii=False, indent=4)
logging.info(f"Data successfully written to {file_path}")
except Exception as e:
logging.error(f"An error occurred: {e}")
def generate_student_response(data_list, config):
# load student model
student_tokenizer = AutoTokenizer.from_pretrained(
config["models"]["student"],
trust_remote_code=True
)
student_model = AutoModelForCausalLM.from_pretrained(
config["models"]["student"],
device_map="auto",
trust_remote_code=True
)
outcomes = []
for sample in tqdm(data_list, desc="Call remote model and generating responses"):
prompt = sample["prompt"]
chosen = sample["chosen"]
# for student model
messages = [
{"role": "user", "content": prompt}
]
text = student_tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = student_tokenizer([text], return_tensors="pt").to(student_model.device)
generated_ids = student_model.generate(
**model_inputs,
max_new_tokens=config["inference"]["max_new_tokens"]
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
rejected = student_tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
gen_data = {'prompt': prompt, 'chosen': chosen, 'rejected': rejected}
outcomes.append(gen_data)
write_data_to_json_file(outcomes, config["dataset"]["labeled_path"])
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, required=True, help='path to the json config file')
args = parser.parse_args()
config = json.load(open(args.config))
data_list = read_json_field(config["dataset"]["instruction_path"])
generate_student_response(data_list, config)
if __name__ == "__main__":
main()