262 lines
10 KiB
Python
262 lines
10 KiB
Python
![]() |
|
||
|
# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
|
||
|
import json
|
||
|
import argparse
|
||
|
import logging
|
||
|
import os
|
||
|
import torch
|
||
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||
|
from vllm import LLM, SamplingParams
|
||
|
from jinja2 import Environment, FileSystemLoader
|
||
|
from tqdm import tqdm
|
||
|
from openai import OpenAI
|
||
|
|
||
|
|
||
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
||
|
|
||
|
|
||
|
def read_json_field(filename, field_name='prompt'):
|
||
|
try:
|
||
|
with open(filename, 'r') as file:
|
||
|
data = json.load(file)
|
||
|
output_fields = []
|
||
|
for item in data:
|
||
|
if field_name in item:
|
||
|
output_fields.append(item[field_name])
|
||
|
return output_fields
|
||
|
except FileNotFoundError:
|
||
|
logging.error("The file was not found.")
|
||
|
except json.JSONDecodeError:
|
||
|
logging.error("There was an error decoding the JSON file.")
|
||
|
except Exception as e:
|
||
|
logging.error(f"An error occurred: {e}")
|
||
|
|
||
|
|
||
|
def write_data_to_json_file(data, file_path):
|
||
|
try:
|
||
|
with open(file_path, 'w') as file:
|
||
|
json.dump(data, file, ensure_ascii=False, indent=4)
|
||
|
logging.info(f"Data successfully written to {file_path}")
|
||
|
except Exception as e:
|
||
|
logging.error(f"An error occurred: {e}")
|
||
|
|
||
|
|
||
|
def load_tokenizer_and_vllm(config, eos_token=None, is_teacher_model=True):
|
||
|
if is_teacher_model:
|
||
|
model_path = config["models"]["teacher"]
|
||
|
else:
|
||
|
model_path = config["models"]["student"]
|
||
|
logging.info(f"Loading ckpt and tokenizer: {model_path}")
|
||
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||
|
tokenizer.padding_side = "left"
|
||
|
if eos_token:
|
||
|
eos_token_id = tokenizer.convert_tokens_to_ids(eos_token)
|
||
|
logging.info(f"eos_token {eos_token} from user input")
|
||
|
elif hasattr(tokenizer, "eos_token_id") and tokenizer.eos_token_id:
|
||
|
logging.info(f"Initial eos_token_id {tokenizer.eos_token_id} from tokenizer")
|
||
|
eos_token_id = tokenizer.eos_token_id
|
||
|
eos_token = tokenizer.convert_ids_to_tokens(eos_token_id)
|
||
|
else:
|
||
|
raise ValueError("No available eos_token or eos_token_id.")
|
||
|
try:
|
||
|
tokenizer.eos_token = eos_token
|
||
|
tokenizer.eos_token_id = eos_token_id
|
||
|
tokenizer.pad_token = eos_token
|
||
|
tokenizer.pad_token_id = eos_token_id
|
||
|
except:
|
||
|
logging.info(f"[WARNING] Cannot set tokenizer.eos_token")
|
||
|
logging.info(f"tokenizer's eos_token: {tokenizer.eos_token}, pad_token: {tokenizer.pad_token}")
|
||
|
logging.info(f"tokenizer's eos_token_id: {tokenizer.eos_token_id}, pad_token_id: {tokenizer.pad_token_id}")
|
||
|
num_gpus = torch.cuda.device_count()
|
||
|
llm = LLM(
|
||
|
model=model_path,
|
||
|
tensor_parallel_size=num_gpus,
|
||
|
enable_chunked_prefill=config["inference"]["enable_chunked_prefill"],
|
||
|
gpu_memory_utilization=config["inference"]["gpu_memory_utilization"],
|
||
|
trust_remote_code=config["inference"]["trust_remote_code"],
|
||
|
dtype=torch.bfloat16,
|
||
|
enforce_eager=config["inference"]["enforce_eager"],
|
||
|
max_model_len=config["inference"]["max_model_len"],
|
||
|
)
|
||
|
logging.info("vLLM model loaded successfully")
|
||
|
return tokenizer, llm
|
||
|
|
||
|
|
||
|
def generate_teacher_student_response_api(data_list, config):
|
||
|
client = OpenAI(
|
||
|
api_key=config["inference"]["api_key"],
|
||
|
base_url=config["inference"]["base_url"]
|
||
|
)
|
||
|
models = client.models.list()
|
||
|
model = models.data[0].id
|
||
|
logging.info(model)
|
||
|
system_prompt = config["inference"]["system_prompt"]
|
||
|
stream = config["inference"]["stream"]
|
||
|
|
||
|
# load student model
|
||
|
student_tokenizer = AutoTokenizer.from_pretrained(
|
||
|
config["models"]["student"],
|
||
|
trust_remote_code=True
|
||
|
)
|
||
|
student_model = AutoModelForCausalLM.from_pretrained(
|
||
|
config["models"]["student"],
|
||
|
device_map="auto",
|
||
|
trust_remote_code=True
|
||
|
)
|
||
|
outcomes = []
|
||
|
for sample in tqdm(data_list, desc="Call remote model and generating responses"):
|
||
|
# for teacher model
|
||
|
if system_prompt == "":
|
||
|
message=[
|
||
|
{'role': 'user', 'content': sample}
|
||
|
]
|
||
|
else:
|
||
|
message=[
|
||
|
{'role': 'system', 'content': system_prompt},
|
||
|
{'role': 'user', 'content': sample}
|
||
|
]
|
||
|
completion = client.chat.completions.create(
|
||
|
messages=message,
|
||
|
model=model,
|
||
|
max_completion_tokens=config["inference"]["max_new_tokens"],
|
||
|
stream=stream,
|
||
|
)
|
||
|
if stream:
|
||
|
result = ""
|
||
|
for chunk in completion:
|
||
|
result += chunk.choices[0].delta.content
|
||
|
else:
|
||
|
result = completion.choices[0].message.content
|
||
|
|
||
|
# for student model
|
||
|
messages = [
|
||
|
{"role": "system", "content": system_prompt},
|
||
|
{"role": "user", "content": sample}
|
||
|
]
|
||
|
text = student_tokenizer.apply_chat_template(
|
||
|
messages,
|
||
|
tokenize=False,
|
||
|
add_generation_prompt=True
|
||
|
)
|
||
|
model_inputs = student_tokenizer([text], return_tensors="pt").to(student_model.device)
|
||
|
|
||
|
generated_ids = student_model.generate(
|
||
|
**model_inputs,
|
||
|
max_new_tokens=config["inference"]["max_new_tokens"]
|
||
|
)
|
||
|
generated_ids = [
|
||
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
||
|
]
|
||
|
|
||
|
rejected = student_tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
||
|
gen_data = {'prompt': sample, 'chosen': result, 'rejected': rejected}
|
||
|
outcomes.append(gen_data)
|
||
|
write_data_to_json_file(outcomes, config["dataset"]["labeled_path"])
|
||
|
|
||
|
|
||
|
def generate_model_response_batch(tokenizer, llm, data_list, config, batch_size=32, is_teacher_model=True):
|
||
|
full_path = config["dataset"]["template"]
|
||
|
template_dir = os.path.dirname(full_path)
|
||
|
template_file = os.path.basename(full_path)
|
||
|
env = Environment(loader=FileSystemLoader(template_dir))
|
||
|
template = env.get_template(template_file)
|
||
|
outcomes = []
|
||
|
batches = [data_list[i:i + batch_size] for i in range(0, len(data_list), batch_size)]
|
||
|
for batch in tqdm(batches, desc="Generating responses"):
|
||
|
new_batch = []
|
||
|
for sample in batch:
|
||
|
message={"role": "user", "content": sample}
|
||
|
full_text = template.render(
|
||
|
message=message,
|
||
|
add_generation_prompt=True,
|
||
|
add_output=False
|
||
|
)
|
||
|
new_batch.append(full_text)
|
||
|
model_outputs = llm.generate(
|
||
|
new_batch,
|
||
|
SamplingParams(
|
||
|
n=1,
|
||
|
top_k=1,
|
||
|
temperature=config["inference"]["temperature"],
|
||
|
seed=config["inference"]["seed"],
|
||
|
skip_special_tokens=False,
|
||
|
ignore_eos=False,
|
||
|
max_tokens=config["inference"]["max_new_tokens"]
|
||
|
)
|
||
|
)
|
||
|
model_responses = [output.outputs[0].text for output in model_outputs]
|
||
|
if is_teacher_model:
|
||
|
gen_data = [{'prompt': batch[i], 'chosen': model_responses[i]} for i in range(len(batch))]
|
||
|
else:
|
||
|
gen_data = [{'prompt': batch[i], 'rejected': model_responses[i]} for i in range(len(batch))]
|
||
|
outcomes = outcomes + gen_data
|
||
|
return outcomes
|
||
|
|
||
|
|
||
|
|
||
|
def merge_outcomes(teacher_outcomes, student_outcomes, config):
|
||
|
try:
|
||
|
student_dict = {item['prompt']: item['rejected'] for item in student_outcomes}
|
||
|
merged_outcomes = []
|
||
|
for teacher_item in teacher_outcomes:
|
||
|
prompt = teacher_item['prompt']
|
||
|
if prompt in student_dict:
|
||
|
merged_outcome = {
|
||
|
'prompt': prompt,
|
||
|
'chosen': teacher_item['chosen'],
|
||
|
'rejected': student_dict[prompt]
|
||
|
}
|
||
|
merged_outcomes.append(merged_outcome)
|
||
|
with open(config["dataset"]["labeled_path"], 'w') as file:
|
||
|
json.dump(merged_outcomes, file, ensure_ascii=False, indent=4)
|
||
|
except Exception as e:
|
||
|
print(f"An error occurred: {e}")
|
||
|
|
||
|
|
||
|
def infer_with_teacher_model(config):
|
||
|
logging.info('Generating distillation data from the teacher model!')
|
||
|
data_list = read_json_field(config["dataset"]["instruction_path"])
|
||
|
try:
|
||
|
job_type = config["job_type"]
|
||
|
if job_type == "rank_dpo_api":
|
||
|
generate_teacher_student_response_api(data_list, config)
|
||
|
elif job_type == "rank_dpo_local":
|
||
|
teacher_tokenizer, teacher_llm = load_tokenizer_and_vllm(config, is_teacher_model=True)
|
||
|
teacher_outcomes = generate_model_response_batch(teacher_tokenizer, teacher_llm, data_list, config, is_teacher_model=True)
|
||
|
del teacher_llm
|
||
|
student_tokenizer, student_llm = load_tokenizer_and_vllm(config, is_teacher_model=False)
|
||
|
student_outcomes = generate_model_response_batch(student_tokenizer, student_llm, data_list, config, is_teacher_model=False)
|
||
|
del student_llm
|
||
|
merge_outcomes(teacher_outcomes, student_outcomes, config)
|
||
|
else:
|
||
|
logging.error(f"Invalid job type: {job_type}")
|
||
|
raise ValueError(f"Invalid job type: {job_type}")
|
||
|
except ValueError as e:
|
||
|
logging.error(f"Training job terminated: {e}")
|
||
|
return
|
||
|
|
||
|
|
||
|
def main():
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument('--config', type=str, required=True, help='path to the json config file')
|
||
|
args = parser.parse_args()
|
||
|
config = json.load(open(args.config))
|
||
|
infer_with_teacher_model(config)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main()
|