105 lines
3.7 KiB
Python
105 lines
3.7 KiB
Python
![]() |
|
||
|
# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
|
||
|
import json
|
||
|
import argparse
|
||
|
import logging
|
||
|
import os
|
||
|
from jinja2 import Environment, BaseLoader, FileSystemLoader
|
||
|
from datasets import load_dataset, Dataset
|
||
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||
|
from trl import DPOTrainer, DPOConfig
|
||
|
import copy
|
||
|
|
||
|
|
||
|
def process_dataset(dataset_path, dataset_seed, env, template):
|
||
|
examples = []
|
||
|
with open(dataset_path, 'r') as file:
|
||
|
examples = json.load(file)
|
||
|
output_text = {
|
||
|
"prompt": [],
|
||
|
"chosen": [],
|
||
|
"rejected": []
|
||
|
}
|
||
|
# use chat template
|
||
|
for i in range(len(examples)):
|
||
|
try:
|
||
|
prompt_message = {"content": examples[i]["prompt"]}
|
||
|
prompt = template.render(message=prompt_message, add_generation_prompt=False, add_output=False)
|
||
|
|
||
|
chosen_message = {"content": examples[i]["prompt"], "output": examples[i]["chosen"]}
|
||
|
chosen = template.render(message=chosen_message, add_generation_prompt=False, add_output=True)
|
||
|
chosen = chosen[len(prompt):]
|
||
|
|
||
|
rejected_message = {"content": examples[i]["prompt"], "output": examples[i]["rejected"]}
|
||
|
rejected = template.render(message=rejected_message, add_generation_prompt=False, add_output=True)
|
||
|
rejected = rejected[len(prompt):]
|
||
|
|
||
|
output_text["prompt"].append(prompt)
|
||
|
output_text["chosen"].append(chosen)
|
||
|
output_text["rejected"].append(rejected)
|
||
|
except:
|
||
|
logging.warning(f"Error processing sample.")
|
||
|
|
||
|
dataset = Dataset.from_dict(output_text)
|
||
|
dataset = dataset.shuffle(seed=dataset_seed)
|
||
|
return dataset
|
||
|
|
||
|
|
||
|
def train(config):
|
||
|
dataset_path = config["dataset"]["labeled_path"]
|
||
|
dataset_seed = config["dataset"]["seed"]
|
||
|
|
||
|
full_path = config["dataset"]["template"]
|
||
|
template_dir = os.path.dirname(full_path)
|
||
|
template_file = os.path.basename(full_path)
|
||
|
env = Environment(loader=FileSystemLoader(template_dir))
|
||
|
template = env.get_template(template_file)
|
||
|
dataset = process_dataset(dataset_path, dataset_seed, env, template)
|
||
|
|
||
|
student_tokenizer = AutoTokenizer.from_pretrained(
|
||
|
config["models"]["student"],
|
||
|
trust_remote_code=True
|
||
|
)
|
||
|
student_model = AutoModelForCausalLM.from_pretrained(
|
||
|
config["models"]["student"],
|
||
|
trust_remote_code=True
|
||
|
)
|
||
|
|
||
|
training_arguments = DPOConfig(**config["training"])
|
||
|
trainer = DPOTrainer(
|
||
|
student_model,
|
||
|
ref_model=copy.deepcopy(student_model),
|
||
|
args=training_arguments,
|
||
|
train_dataset=dataset,
|
||
|
processing_class=student_tokenizer
|
||
|
)
|
||
|
|
||
|
trainer.train()
|
||
|
trainer.save_model(config["training"]["output_dir"])
|
||
|
student_tokenizer.save_pretrained(config["training"]["output_dir"])
|
||
|
|
||
|
|
||
|
def main():
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument('--config', type=str, required=True, help='path to the json config file')
|
||
|
args = parser.parse_args()
|
||
|
config = json.load(open(args.config))
|
||
|
train(config)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main()
|