Files
distillation/easydistill/rl/reward_train.py

107 lines
4.2 KiB
Python
Raw Normal View History

2025-05-27 18:55:46 +08:00
# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import json
import argparse
import logging
import os
from jinja2 import Environment, FileSystemLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from trl import RewardTrainer, RewardConfig
from datasets import Dataset
def process_dataset(dataset_path, tokenizer, config, template):
kwargs = {"padding": "max_length", "truncation": True, "max_length": config["training"]["max_length"], "return_tensors": "pt"}
examples = []
try:
with open(dataset_path, 'r') as file:
examples = json.load(file)
except FileNotFoundError:
print(f"Error: The file '{dataset_path}' was not found.")
except json.JSONDecodeError:
print(f"Error: The file '{dataset_path}' is not a valid JSON file.")
except Exception as e:
print(f"An unexpected error occurred: {e}")
print(examples)
output_dataset = []
# use chat template
for i in range(len(examples)):
try:
chosen_message = {"content": examples[i]["prompt"], "output": examples[i]["chosen"]}
prompt_plus_chosen_response = template.render(message=chosen_message, add_generation_prompt=False, add_output=True)
rejected_message = {"content": examples[i]["prompt"], "output": examples[i]["rejected"]}
prompt_plus_rejected_response = template.render(message=rejected_message, add_generation_prompt=False, add_output=True)
tokens_chosen = tokenizer.encode_plus(prompt_plus_chosen_response, **kwargs)
tokens_rejected = tokenizer.encode_plus(prompt_plus_rejected_response, **kwargs)
sample = {
"input_ids_chosen": tokens_chosen["input_ids"][0], "attention_mask_chosen": tokens_chosen["attention_mask"][0],
"input_ids_rejected": tokens_rejected["input_ids"][0], "attention_mask_rejected": tokens_rejected["attention_mask"][0]
}
output_dataset.append(sample)
except:
logging.warning(f"Error processing sample.")
dataset = Dataset.from_list(output_dataset)
return dataset
def train(config):
dataset_path = config["dataset"]["labeled_path"]
student_tokenizer = AutoTokenizer.from_pretrained(
config["models"]["student"],
trust_remote_code=True
)
full_path = config["dataset"]["template"]
template_dir = os.path.dirname(full_path)
template_file = os.path.basename(full_path)
env = Environment(loader=FileSystemLoader(template_dir))
template = env.get_template(template_file)
dataset = process_dataset(dataset_path, student_tokenizer, config, template)
student_model = AutoModelForSequenceClassification.from_pretrained(
config["models"]["student"],
num_labels=1,
trust_remote_code=True
)
student_model.config.pad_token_id = student_tokenizer.pad_token_id
training_arguments = RewardConfig(**config["training"])
trainer = RewardTrainer(
model=student_model,
processing_class=student_tokenizer,
args=training_arguments,
train_dataset=dataset
)
trainer.train()
trainer.save_model(config["training"]["output_dir"])
student_tokenizer.save_pretrained(config["training"]["output_dir"])
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, required=True, help='path to the json config file')
args = parser.parse_args()
config = json.load(open(args.config))
train(config)
if __name__ == "__main__":
main()