Files
distillation/easydistill/mmkd/train_lora.py

290 lines
10 KiB
Python
Raw Normal View History

# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import json
import torch
import numpy as np
import jsonlines
import torch.nn.functional as F
import os
import argparse
import logging
from datasets import load_dataset, Dataset
from typing import Optional, Dict, Union, List
from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLProcessor
from transformers import (
PreTrainedModel,
PreTrainedTokenizerBase,
AutoModelForCausalLM,
AutoTokenizer,
TrainingArguments,
)
from qwen_vl_utils import process_vision_info
from trl import SFTTrainer, SFTConfig
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
from torch.utils.data import Dataset
from PIL import Image
import os
class MMDataset(Dataset):
def __init__(self, data):
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[int(idx)]
class DistillSFTTrainer(SFTTrainer):
def __init__(
self,
logits_dir: str = None,
teacher_vocab_size=None,
kd_ratio: float = 0.5,
max_seq_length: int = 1024,
distillation_type: str = "forward_kld",
**kwargs,
):
super().__init__(**kwargs)
self.logits_dir = logits_dir
self.teacher_vocab_size = teacher_vocab_size
self.kd_ratio = kd_ratio
self.max_seq_length = max_seq_length
self.distillation_type = distillation_type
self.teacher_logits = []
with jsonlines.open(self.logits_dir) as reader:
for obj in reader:
self.teacher_logits.append(obj)
def _load_teacher_logits(
self,
batch_size: int,
it: int,
dp_rank: int,
device: torch.device,
no_model_batch: Dict,
):
start_idx = dp_rank * batch_size + batch_size * it
end_idx = dp_rank * batch_size + batch_size * (it + 1)
loaded_data = self.teacher_logits[start_idx:end_idx]
arr = np.zeros((batch_size, self.max_seq_length, self.teacher_vocab_size))
for i in range(len(loaded_data)):
for j in range(len(loaded_data[i])):
keys = np.array(list(loaded_data[i][j].keys()), dtype=int)
values = np.array(list(loaded_data[i][j].values()))
arr[i, j, keys] = values
logits_tensor = torch.tensor(arr, dtype=torch.bfloat16, device=device)
return self._shift_tensor_right(
logits_tensor, no_model_batch["label"], pad_value=0
)
def _compute_white_box_distillation_loss(
self,
student_logits: torch.Tensor,
teacher_logits: torch.Tensor,
labels: Optional[torch.Tensor],
):
student_logits = student_logits[:, : self.max_seq_length, :]
teacher_probs = teacher_logits[
:, : student_logits.size(1), : student_logits.size(-1)
]
mask = (
(labels != -100).float()
if labels is not None
else torch.ones_like(student_logits[:, :, 0])
)
if self.distillation_type == "forward_kld":
# Forward KLD: student learns from teacher (original implementation)
loss = F.kl_div(
F.log_softmax(student_logits, dim=-1),
teacher_probs,
reduction="none",
log_target=False,
).sum(dim=-1) / torch.sum(mask.view(-1), dim=0)
elif self.distillation_type == "reverse_kld":
# Reverse KLD: teacher provides certainty to student
loss = F.kl_div(
torch.log(teacher_probs.clamp(min=1e-10)), # avoid log(0)
F.softmax(student_logits, dim=-1),
reduction="none",
log_target=False,
).sum(dim=-1) / torch.sum(mask.view(-1), dim=0)
else:
raise ValueError(
f"Unsupported distillation type: {self.distillation_type}. Use 'forward_kld' or 'reverse_kld'"
)
return (loss * mask).sum() / mask.sum()
@staticmethod
def _shift_tensor_right(
inputs: torch.Tensor, labels: torch.Tensor, pad_value: float = 0.0
):
batch_size, seqlen, vocab_size = inputs.shape
device = inputs.device
labels_ne = labels != -100
shift_distances = torch.argmax(labels_ne.int(), dim=1)
idx = (
torch.arange(seqlen, device=device).unsqueeze(0).expand(batch_size, seqlen)
)
shifted_idx = idx - shift_distances.unsqueeze(1)
mask = shifted_idx >= 0
shifted_idx = shifted_idx.clamp(min=0)
inputs_flat = inputs.view(batch_size, seqlen, vocab_size)
shifted_idx = shifted_idx.unsqueeze(2).expand(-1, -1, vocab_size)
gathered = torch.gather(inputs_flat, 1, shifted_idx)
mask = mask.unsqueeze(2).expand(-1, -1, vocab_size)
return torch.where(mask, gathered, torch.full_like(gathered, pad_value))
def compute_loss(
self,
model: PreTrainedModel,
inputs: Dict[str, torch.Tensor],
return_outputs=False,
num_items_in_batch=None,
):
outputs = model(**inputs)
lm_loss = outputs.loss
if self.logits_dir:
teacher_logits = self._load_teacher_logits(
batch_size=inputs["input_ids"].size(0),
it=self.state.global_step,
dp_rank=(
torch.distributed.get_rank()
if torch.distributed.is_initialized()
else 0
),
device=model.device,
no_model_batch={"label": inputs.get("labels", None)},
)
distil_loss = self._compute_white_box_distillation_loss(
student_logits=outputs.logits,
teacher_logits=teacher_logits,
labels=inputs.get("labels", None),
)
total_loss = (1 - self.kd_ratio) * lm_loss + self.kd_ratio * distil_loss
else:
total_loss = lm_loss
return (total_loss, outputs) if return_outputs else total_loss
def train(config):
with open(config["dataset"]["labeled_path"], "r") as f:
raw_data = json.load(f)
dataset = MMDataset(raw_data)
student_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
config["models"]["student"], trust_remote_code=True
)
processor = Qwen2_5_VLProcessor.from_pretrained(config["models"]["student"])
training_arguments = SFTConfig(**config["training"])
training_arguments.gradient_checkpointing_kwargs = dict(use_reentrant=False)
training_arguments.remove_unused_columns = False
training_arguments.dataset_kwargs = {"skip_prepare_dataset": True}
def collate_fn(examples):
texts = []
images = []
for example in examples:
chat = example
text = processor.apply_chat_template(chat, tokenize=False)
texts.append(text)
image, _ = process_vision_info(example)
images.append(image)
batch = processor(text=texts, images=images, return_tensors="pt", padding=True)
labels = batch["input_ids"].clone()
labels[labels == processor.tokenizer.pad_token_id] = -100
if isinstance(processor, Qwen2_5_VLProcessor):
image_tokens = [151652, 151653, 151655]
else:
image_tokens = [
processor.tokenizer.convert_tokens_to_ids(processor.image_token)
]
for image_token_id in image_tokens:
labels[labels == image_token_id] = -100
batch["labels"] = labels
return batch
try:
job_type = config["job_type"]
if "mmkd_black_box" in job_type:
trainer = SFTTrainer(
model=student_model,
data_collator=collate_fn,
processing_class=processor.tokenizer,
args=training_arguments,
train_dataset=dataset,
)
elif "mmkd_white_box" in job_type:
teacher_vocab_size = json.load(
open(os.path.join(config["models"]["teacher"], "config.json"))
)["vocab_size"]
trainer = DistillSFTTrainer(
logits_dir=config["dataset"]["logits_path"],
data_collator=collate_fn,
teacher_vocab_size=teacher_vocab_size,
kd_ratio=config["distillation"]["kd_ratio"],
max_seq_length=config["distillation"]["max_seq_length"],
distillation_type=config["distillation"].get(
"distillation_type", "forward_kld"
),
model=student_model,
processing_class=processor.tokenizer,
args=training_arguments,
train_dataset=dataset,
)
else:
logging.error(f"Invalid job type: {job_type}")
raise ValueError(f"Invalid job type: {job_type}")
except ValueError as e:
logging.error(f"Training job terminated: {e}")
return
trainer.train()
trainer.save_model(config["training"]["output_dir"])
processor.tokenizer.save_pretrained(config["training"]["output_dir"])
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--config", type=str, required=True, help="path to the json config file"
)
args = parser.parse_args()
config = json.load(open(args.config))
train(config)
if __name__ == "__main__":
main()