Files
distillation/easydistill/eval/task_sampler.py

181 lines
6.4 KiB
Python
Raw Permalink Normal View History

# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import json
import argparse
import logging
import os
import re
from tqdm import tqdm
from openai import OpenAI
from collections import Counter
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
predefined_distribution = {
'Math': 0.167,
'Code Generation': 0.083,
'Writing': 0.017,
'Computer Science': 0.017,
'Reasoning': 0.167,
'Complex Format': 0.017,
'Code Debug': 0.083,
'Common-Sense': 0.017,
'Counterfactual': 0.017,
'Multilingual': 0.017,
'Roleplay': 0.017,
'Biology': 0.017,
'Technology': 0.017,
'Ethics': 0.017,
'Sport': 0.017,
'Law': 0.017,
'Medicine': 0.017,
'Literature': 0.017,
'Entertainment': 0.017,
'Art': 0.017,
'Music': 0.017,
'Toxicity': 0.017,
'Economy': 0.017,
'Physics': 0.017,
'History': 0.017,
'Chemistry': 0.017,
'Philosophy': 0.017,
'Health': 0.017,
'Ecology': 0.017,
'Grammar': 0.017,
'Paraphrase': 0.017,
'Others': 0.041
}
predefined_prompt = """
You are a data annotation expert. Please classify the task type or domain of #Given Instruction.
The task type or domain should be in the list: [Math, Code Generation, Writing, Computer Science,
Reasoning, Complex Format, Code Debug, Common-Sense, Counterfactual, Multilingual, Roleplay,
Biology, Technology, Ethics, Sport, Law, Medicine, Literature, Entertainment, Art, Music,
Toxicity, Economy, Physics, History, Chemistry, Philosophy,Health,Ecology,Grammar,Paraphrase,
Others]. You should place your answer enclosed within <answer></answer> tags, such as <answer>Math</answer>.
Do not return anything else.
#Given Instruction#:
"""
def extract_answer(content):
pattern = r'<answer>(.*?)</answer>'
match = re.search(pattern, content, re.DOTALL)
if match:
return match.group(1)
else:
return None
def read_json_fields(filename):
try:
with open(filename, 'r') as file:
data = json.load(file)
return data
except FileNotFoundError:
logging.error("The file was not found.")
except json.JSONDecodeError:
logging.error("There was an error decoding the JSON file.")
except Exception as e:
logging.error(f"An error occurred: {e}")
def write_data_to_json_file(data, file_path):
try:
with open(file_path, 'w') as file:
json.dump(data, file, ensure_ascii=False, indent=4)
logging.info(f"Data successfully written to {file_path}")
except Exception as e:
logging.error(f"An error occurred: {e}")
def classify_instruction(instruction, client, model, config):
message = [
{"role": "user", "content": predefined_prompt + "\n" + instruction}
]
completion = client.chat.completions.create(
messages = message,
model = model,
max_completion_tokens = config["inference"]["max_new_tokens"]
)
result = completion.choices[0].message.content.strip()
result = extract_answer(result)
if result is None or result not in predefined_distribution.keys():
result = 'Others'
return result
def generate_teacher_response_api(data_list, config):
client = OpenAI(
api_key = config["inference"]["api_key"],
base_url = config["inference"]["base_url"]
)
models = client.models.list()
model = models.data[0].id
logging.info(model)
classified_data = []
for sample in tqdm(data_list, desc="Call remote model and generating responses"):
instruction = sample["instruction"]
category = classify_instruction(item['instruction'], client, model)
new_sample = sample.copy()
new_sample['category'] = category
classified_data.append(new_sample)
# Count occurrences per category
category_counts = Counter(item['category'] for item in classified_data)
total_samples = len(classified_data)
# Resample according to predefined distribution
resampled_data = []
for category, target_ratio in predefined_distribution.items():
target_count = int(total_samples * target_ratio)
category_samples = [item for item in classified_data if item['category'] == category]
if len(category_samples) == 0:
logging.warning("No instructions are provided for the category: " + category)
continue
if len(category_samples) > target_count:
# Randomly sample the required number of instructions
resampled_category_samples = random.sample(category_samples, target_count)
else:
# If not enough samples, repeat the existing ones
resampled_category_samples = category_samples * (target_count // len(category_samples)) + random.sample(
category_samples, target_count % len(category_samples))
resampled_data.extend(resampled_category_samples)
write_data_to_json_file(resampled_data, config["dataset"]["output_path"])
def sample_with_teacher_model(config):
logging.info('Generating distillation data from the teacher model!')
data_list = read_json_fields(config["dataset"]["input_path"])
job_type = config["job_type"]
assert job_type == "instruct_sample_api"
generate_teacher_response_api(data_list, config)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, required=True, help='path to the json config file')
args = parser.parse_args()
config = json.load(open(args.config))
sample_with_teacher_model(config)
if __name__ == "__main__":
main()