Files
distillation/easydistill/rank/train.py

105 lines
3.7 KiB
Python
Raw Permalink Normal View History

2025-05-27 18:55:46 +08:00
# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import json
import argparse
import logging
import os
from jinja2 import Environment, BaseLoader, FileSystemLoader
from datasets import load_dataset, Dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from trl import DPOTrainer, DPOConfig
import copy
def process_dataset(dataset_path, dataset_seed, env, template):
examples = []
with open(dataset_path, 'r') as file:
examples = json.load(file)
output_text = {
"prompt": [],
"chosen": [],
"rejected": []
}
# use chat template
for i in range(len(examples)):
try:
prompt_message = {"content": examples[i]["prompt"]}
prompt = template.render(message=prompt_message, add_generation_prompt=False, add_output=False)
chosen_message = {"content": examples[i]["prompt"], "output": examples[i]["chosen"]}
chosen = template.render(message=chosen_message, add_generation_prompt=False, add_output=True)
chosen = chosen[len(prompt):]
rejected_message = {"content": examples[i]["prompt"], "output": examples[i]["rejected"]}
rejected = template.render(message=rejected_message, add_generation_prompt=False, add_output=True)
rejected = rejected[len(prompt):]
output_text["prompt"].append(prompt)
output_text["chosen"].append(chosen)
output_text["rejected"].append(rejected)
except:
logging.warning(f"Error processing sample.")
dataset = Dataset.from_dict(output_text)
dataset = dataset.shuffle(seed=dataset_seed)
return dataset
def train(config):
dataset_path = config["dataset"]["labeled_path"]
dataset_seed = config["dataset"]["seed"]
full_path = config["dataset"]["template"]
template_dir = os.path.dirname(full_path)
template_file = os.path.basename(full_path)
env = Environment(loader=FileSystemLoader(template_dir))
template = env.get_template(template_file)
dataset = process_dataset(dataset_path, dataset_seed, env, template)
student_tokenizer = AutoTokenizer.from_pretrained(
config["models"]["student"],
trust_remote_code=True
)
student_model = AutoModelForCausalLM.from_pretrained(
config["models"]["student"],
trust_remote_code=True
)
training_arguments = DPOConfig(**config["training"])
trainer = DPOTrainer(
student_model,
ref_model=copy.deepcopy(student_model),
args=training_arguments,
train_dataset=dataset,
processing_class=student_tokenizer
)
trainer.train()
trainer.save_model(config["training"]["output_dir"])
student_tokenizer.save_pretrained(config["training"]["output_dir"])
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, required=True, help='path to the json config file')
args = parser.parse_args()
config = json.load(open(args.config))
train(config)
if __name__ == "__main__":
main()