2025-08-26 12:57:15 +00:00
|
|
|
# Copyright 2024 Alibaba Group Holding Limited. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ==============================================================================
|
|
|
|
|
|
|
|
import json
|
|
|
|
import torch
|
|
|
|
import numpy as np
|
|
|
|
import jsonlines
|
|
|
|
import torch.nn.functional as F
|
|
|
|
import os
|
|
|
|
import argparse
|
|
|
|
import logging
|
|
|
|
from datasets import load_dataset, Dataset
|
|
|
|
from typing import Optional, Dict, Union, List
|
|
|
|
from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLProcessor
|
|
|
|
from transformers import (
|
|
|
|
PreTrainedModel,
|
|
|
|
PreTrainedTokenizerBase,
|
|
|
|
AutoModelForCausalLM,
|
|
|
|
AutoTokenizer,
|
|
|
|
TrainingArguments,
|
|
|
|
AutoConfig
|
|
|
|
)
|
|
|
|
from qwen_vl_utils import process_vision_info
|
|
|
|
from trl import SFTTrainer, SFTConfig
|
|
|
|
from peft import LoraConfig
|
|
|
|
|
|
|
|
logging.basicConfig(
|
|
|
|
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
from torch.utils.data import Dataset
|
|
|
|
from PIL import Image
|
|
|
|
import os
|
|
|
|
|
|
|
|
|
|
|
|
class MMDataset(Dataset):
|
|
|
|
def __init__(self, data):
|
|
|
|
self.data = data
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self.data)
|
|
|
|
|
|
|
|
def __getitem__(self, idx):
|
|
|
|
return self.data[int(idx)]
|
|
|
|
|
|
|
|
|
|
|
|
class DistillSFTTrainer(SFTTrainer):
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
logits_dir: str = None,
|
|
|
|
teacher_vocab_size=None,
|
|
|
|
kd_ratio: float = 0.5,
|
|
|
|
max_seq_length: int = 1024,
|
|
|
|
distillation_type: str = "forward_kld",
|
|
|
|
**kwargs,
|
|
|
|
):
|
|
|
|
super().__init__(**kwargs)
|
|
|
|
self.logits_dir = logits_dir
|
|
|
|
self.teacher_vocab_size = teacher_vocab_size
|
|
|
|
self.kd_ratio = kd_ratio
|
|
|
|
self.max_seq_length = max_seq_length
|
|
|
|
self.distillation_type = distillation_type
|
|
|
|
|
|
|
|
def _load_teacher_logits(
|
|
|
|
self,
|
|
|
|
batch_size: int,
|
|
|
|
it: int,
|
|
|
|
dp_rank: int,
|
|
|
|
device: torch.device,
|
|
|
|
no_model_batch: Dict,
|
|
|
|
):
|
|
|
|
start_idx = dp_rank * batch_size + batch_size * it
|
|
|
|
end_idx = dp_rank * batch_size + batch_size * (it + 1)
|
|
|
|
|
|
|
|
loaded_data = []
|
|
|
|
# Open file and read only the specific lines needed for the current batch
|
|
|
|
with jsonlines.open(self.logits_dir) as reader:
|
|
|
|
for i, obj in enumerate(reader):
|
|
|
|
if i >= start_idx and i < end_idx:
|
|
|
|
loaded_data.append(obj)
|
|
|
|
elif i >= end_idx:
|
|
|
|
break
|
|
|
|
|
|
|
|
arr = np.zeros((batch_size, self.max_seq_length, self.teacher_vocab_size))
|
|
|
|
for i in range(len(loaded_data)):
|
|
|
|
for j in range(len(loaded_data[i])):
|
|
|
|
keys = np.array(list(loaded_data[i][j].keys()), dtype=int)
|
|
|
|
values = np.array(list(loaded_data[i][j].values()))
|
|
|
|
arr[i, j, keys] = values
|
|
|
|
|
|
|
|
logits_tensor = torch.tensor(arr, dtype=torch.bfloat16, device=device)
|
|
|
|
return self._shift_tensor_right(
|
|
|
|
logits_tensor, no_model_batch["label"], pad_value=0
|
|
|
|
)
|
|
|
|
|
|
|
|
def _compute_white_box_distillation_loss(
|
|
|
|
self,
|
|
|
|
student_logits: torch.Tensor,
|
|
|
|
teacher_logits: torch.Tensor,
|
|
|
|
labels: Optional[torch.Tensor],
|
2025-09-01 09:33:16 +00:00
|
|
|
temperature: float = 1.0,
|
2025-08-26 12:57:15 +00:00
|
|
|
):
|
|
|
|
student_logits = student_logits[:, : self.max_seq_length, :]
|
2025-09-01 09:33:16 +00:00
|
|
|
teacher_logits = teacher_logits[
|
2025-08-26 12:57:15 +00:00
|
|
|
:, : student_logits.size(1), : student_logits.size(-1)
|
|
|
|
]
|
|
|
|
mask = (
|
|
|
|
(labels != -100).float()
|
|
|
|
if labels is not None
|
|
|
|
else torch.ones_like(student_logits[:, :, 0])
|
|
|
|
)
|
|
|
|
|
|
|
|
mask = mask[:, : self.max_seq_length]
|
2025-09-01 09:33:16 +00:00
|
|
|
|
|
|
|
# Apply temperature scaling
|
|
|
|
student_log_probs = F.log_softmax(student_logits / temperature, dim=-1)
|
|
|
|
teacher_probs = F.softmax(teacher_logits / temperature, dim=-1)
|
2025-08-26 12:57:15 +00:00
|
|
|
|
|
|
|
if self.distillation_type == "forward_kld":
|
|
|
|
# Forward KLD: student learns from teacher (original implementation)
|
|
|
|
loss = F.kl_div(
|
2025-09-01 09:33:16 +00:00
|
|
|
student_log_probs,
|
2025-08-26 12:57:15 +00:00
|
|
|
teacher_probs,
|
|
|
|
reduction="none",
|
|
|
|
log_target=False,
|
2025-09-01 09:33:16 +00:00
|
|
|
).sum(dim=-1)# / torch.sum(mask.view(-1), dim=0)
|
2025-08-26 12:57:15 +00:00
|
|
|
elif self.distillation_type == "reverse_kld":
|
|
|
|
# Reverse KLD: teacher provides certainty to student
|
|
|
|
loss = F.kl_div(
|
|
|
|
torch.log(teacher_probs.clamp(min=1e-10)), # avoid log(0)
|
2025-09-01 09:33:16 +00:00
|
|
|
F.softmax(student_logits / temperature, dim=-1),
|
2025-08-26 12:57:15 +00:00
|
|
|
reduction="none",
|
|
|
|
log_target=False,
|
2025-09-01 09:33:16 +00:00
|
|
|
).sum(dim=-1)# / torch.sum(mask.view(-1), dim=0)
|
2025-08-26 12:57:15 +00:00
|
|
|
else:
|
|
|
|
raise ValueError(
|
|
|
|
f"Unsupported distillation type: {self.distillation_type}. Use 'forward_kld' or 'reverse_kld'"
|
|
|
|
)
|
|
|
|
|
2025-09-01 09:33:16 +00:00
|
|
|
return (loss * mask).sum() / mask.sum() * (temperature ** 2)
|
|
|
|
|
2025-08-26 12:57:15 +00:00
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _shift_tensor_right(
|
|
|
|
inputs: torch.Tensor, labels: torch.Tensor, pad_value: float = 0.0
|
|
|
|
):
|
|
|
|
batch_size, seqlen, vocab_size = inputs.shape
|
|
|
|
device = inputs.device
|
|
|
|
labels_ne = labels != -100
|
|
|
|
shift_distances = torch.argmax(labels_ne.int(), dim=1)
|
|
|
|
idx = (
|
|
|
|
torch.arange(seqlen, device=device).unsqueeze(0).expand(batch_size, seqlen)
|
|
|
|
)
|
|
|
|
shifted_idx = idx - shift_distances.unsqueeze(1)
|
|
|
|
mask = shifted_idx >= 0
|
|
|
|
shifted_idx = shifted_idx.clamp(min=0)
|
|
|
|
inputs_flat = inputs.view(batch_size, seqlen, vocab_size)
|
|
|
|
shifted_idx = shifted_idx.unsqueeze(2).expand(-1, -1, vocab_size)
|
|
|
|
gathered = torch.gather(inputs_flat, 1, shifted_idx)
|
|
|
|
mask = mask.unsqueeze(2).expand(-1, -1, vocab_size)
|
|
|
|
return torch.where(mask, gathered, torch.full_like(gathered, pad_value))
|
|
|
|
|
|
|
|
def compute_loss(
|
|
|
|
self,
|
|
|
|
model: PreTrainedModel,
|
|
|
|
inputs: Dict[str, torch.Tensor],
|
|
|
|
return_outputs=False,
|
|
|
|
num_items_in_batch=None,
|
|
|
|
):
|
|
|
|
outputs = model(**inputs)
|
2025-09-01 09:33:16 +00:00
|
|
|
lm_loss = outputs.loss
|
2025-08-26 12:57:15 +00:00
|
|
|
if self.logits_dir:
|
|
|
|
teacher_logits = self._load_teacher_logits(
|
|
|
|
batch_size=inputs["input_ids"].size(0),
|
|
|
|
it=self.state.global_step,
|
|
|
|
dp_rank=(
|
|
|
|
torch.distributed.get_rank()
|
|
|
|
if torch.distributed.is_initialized()
|
|
|
|
else 0
|
|
|
|
),
|
|
|
|
device=model.device,
|
|
|
|
no_model_batch={"label": inputs.get("labels", None)},
|
|
|
|
)
|
2025-09-01 09:33:16 +00:00
|
|
|
distil_loss = self._compute_white_box_distillation_loss(
|
|
|
|
student_logits=outputs.logits,
|
|
|
|
teacher_logits=teacher_logits,
|
|
|
|
labels=inputs.get("labels", None),
|
|
|
|
)
|
|
|
|
total_loss = (1 - self.kd_ratio) * lm_loss + self.kd_ratio * distil_loss
|
2025-08-26 12:57:15 +00:00
|
|
|
else:
|
2025-09-01 09:33:16 +00:00
|
|
|
total_loss = lm_loss
|
|
|
|
return (total_loss, outputs) if return_outputs else total_loss
|
2025-08-26 12:57:15 +00:00
|
|
|
|
|
|
|
|
|
|
|
def train(config):
|
2025-09-01 09:33:16 +00:00
|
|
|
with open(config["dataset"]["labeled_path"], "r") as f:
|
|
|
|
raw_data = json.load(f)
|
2025-08-26 12:57:15 +00:00
|
|
|
dataset = MMDataset(raw_data)
|
|
|
|
student_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
|
|
config["models"]["student"],
|
|
|
|
torch_dtype=torch.bfloat16,
|
|
|
|
attn_implementation="flash_attention_2",
|
|
|
|
trust_remote_code=True,
|
|
|
|
device_map="auto",
|
|
|
|
)
|
|
|
|
processor = Qwen2_5_VLProcessor.from_pretrained(config["models"]["student"])
|
|
|
|
|
|
|
|
# Creating LoRA configuration
|
|
|
|
lora_config = LoraConfig(
|
2025-09-01 09:33:16 +00:00
|
|
|
r=config["training"]["lora_rank"], # Rank of the LoRA layers
|
|
|
|
lora_alpha=config["training"]["lora_alpha"], # Scaling factor for the LoRA layers
|
|
|
|
lora_dropout=config["training"]{"lora_dropout"}, # Dropout rate for the LoRA layers
|
2025-08-26 12:57:15 +00:00
|
|
|
bias="none", # No bias in LoRA layers
|
|
|
|
task_type="CAUSAL_LM", # Task type for the LoRA layers
|
|
|
|
target_modules=["q_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "o_proj"], # Target modules for LoRA
|
|
|
|
)
|
|
|
|
|
|
|
|
training_arguments = SFTConfig(**config["training"])
|
|
|
|
training_arguments.gradient_checkpointing_kwargs = dict(use_reentrant=False)
|
|
|
|
training_arguments.remove_unused_columns = False
|
|
|
|
training_arguments.dataset_kwargs = {"skip_prepare_dataset": True}
|
|
|
|
|
|
|
|
def collate_fn(examples):
|
|
|
|
texts = []
|
|
|
|
images = []
|
|
|
|
for example in examples:
|
2025-09-01 09:33:16 +00:00
|
|
|
|
2025-08-26 12:57:15 +00:00
|
|
|
chat = example
|
2025-09-01 09:33:16 +00:00
|
|
|
text = processor.apply_chat_template(chat, tokenize=False)
|
2025-08-26 12:57:15 +00:00
|
|
|
texts.append(text)
|
|
|
|
|
|
|
|
image, _ = process_vision_info(example)
|
|
|
|
images.append(image)
|
|
|
|
|
|
|
|
batch = processor(text=texts, images=images, return_tensors="pt", padding=True)
|
|
|
|
labels = batch["input_ids"].clone()
|
2025-09-01 09:33:16 +00:00
|
|
|
labels[labels == processor.tokenizer.pad_token_id] = -100
|
2025-08-26 12:57:15 +00:00
|
|
|
|
2025-09-01 09:33:16 +00:00
|
|
|
if isinstance(processor, Qwen2_5_VLProcessor):
|
|
|
|
image_tokens = [151652, 151653, 151655]
|
|
|
|
else:
|
|
|
|
image_tokens = [
|
|
|
|
processor.tokenizer.convert_tokens_to_ids(processor.image_token)
|
|
|
|
]
|
2025-08-26 12:57:15 +00:00
|
|
|
|
2025-09-01 09:33:16 +00:00
|
|
|
for image_token_id in image_tokens:
|
|
|
|
labels[labels == image_token_id] = -100
|
2025-08-26 12:57:15 +00:00
|
|
|
batch["labels"] = labels
|
|
|
|
return batch
|
|
|
|
|
|
|
|
try:
|
|
|
|
job_type = config["job_type"]
|
|
|
|
if "mmkd_black_box" in job_type:
|
|
|
|
|
|
|
|
trainer = SFTTrainer(
|
|
|
|
model=student_model,
|
|
|
|
data_collator=collate_fn,
|
|
|
|
# tokenizer=processor.tokenizer,
|
|
|
|
args=training_arguments,
|
|
|
|
train_dataset=dataset,
|
|
|
|
peft_config=lora_config,
|
|
|
|
)
|
|
|
|
elif "mmkd_white_box" in job_type:
|
|
|
|
teacher_config = AutoConfig.from_pretrained(
|
|
|
|
config["models"]["teacher"],
|
|
|
|
trust_remote_code=True
|
|
|
|
)
|
|
|
|
teacher_vocab_size = teacher_config.vocab_size
|
|
|
|
|
|
|
|
trainer = DistillSFTTrainer(
|
|
|
|
logits_dir=config["dataset"]["logits_path"],
|
|
|
|
data_collator=collate_fn,
|
|
|
|
teacher_vocab_size=teacher_vocab_size,
|
|
|
|
kd_ratio=config["distillation"]["kd_ratio"],
|
|
|
|
max_seq_length=config["distillation"]["max_seq_length"],
|
|
|
|
distillation_type=config["distillation"].get(
|
|
|
|
"distillation_type", "forward_kld"
|
|
|
|
),
|
|
|
|
model=student_model,
|
|
|
|
peft_config=lora_config,
|
|
|
|
# tokenizer=processor.tokenizer,
|
|
|
|
args=training_arguments,
|
|
|
|
train_dataset=dataset,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
logging.error(f"Invalid job type: {job_type}")
|
|
|
|
raise ValueError(f"Invalid job type: {job_type}")
|
|
|
|
except ValueError as e:
|
|
|
|
logging.error(f"Training job terminated: {e}")
|
|
|
|
return
|
|
|
|
|
|
|
|
trainer.train()
|
|
|
|
trainer.save_model(config["training"]["output_dir"])
|
|
|
|
processor.tokenizer.save_pretrained(config["training"]["output_dir"])
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument(
|
|
|
|
"--config", type=str, required=True, help="path to the json config file"
|
|
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
config = json.load(open(args.config))
|
|
|
|
train(config)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|