First commit OCR_earsing and Synthetics Handwritten Recognition awesome repo
This commit is contained in:
445
OCR_earsing/latent_diffusion/taming/modules/vqvae/quantize.py
Normal file
445
OCR_earsing/latent_diffusion/taming/modules/vqvae/quantize.py
Normal file
@@ -0,0 +1,445 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import numpy as np
|
||||
from torch import einsum
|
||||
from einops import rearrange
|
||||
|
||||
|
||||
class VectorQuantizer(nn.Module):
|
||||
"""
|
||||
see https://github.com/MishaLaskin/vqvae/blob/d761a999e2267766400dc646d82d3ac3657771d4/models/quantizer.py
|
||||
____________________________________________
|
||||
Discretization bottleneck part of the VQ-VAE.
|
||||
Inputs:
|
||||
- n_e : number of embeddings
|
||||
- e_dim : dimension of embedding
|
||||
- beta : commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2
|
||||
_____________________________________________
|
||||
"""
|
||||
|
||||
# NOTE: this class contains a bug regarding beta; see VectorQuantizer2 for
|
||||
# a fix and use legacy=False to apply that fix. VectorQuantizer2 can be
|
||||
# used wherever VectorQuantizer has been used before and is additionally
|
||||
# more efficient.
|
||||
def __init__(self, n_e, e_dim, beta):
|
||||
super(VectorQuantizer, self).__init__()
|
||||
self.n_e = n_e
|
||||
self.e_dim = e_dim
|
||||
self.beta = beta
|
||||
|
||||
self.embedding = nn.Embedding(self.n_e, self.e_dim)
|
||||
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
|
||||
|
||||
def forward(self, z):
|
||||
"""
|
||||
Inputs the output of the encoder network z and maps it to a discrete
|
||||
one-hot vector that is the index of the closest embedding vector e_j
|
||||
z (continuous) -> z_q (discrete)
|
||||
z.shape = (batch, channel, height, width)
|
||||
quantization pipeline:
|
||||
1. get encoder input (B,C,H,W)
|
||||
2. flatten input to (B*H*W,C)
|
||||
"""
|
||||
# reshape z -> (batch, height, width, channel) and flatten
|
||||
z = z.permute(0, 2, 3, 1).contiguous()
|
||||
z_flattened = z.view(-1, self.e_dim)
|
||||
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
||||
|
||||
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
|
||||
torch.sum(self.embedding.weight**2, dim=1) - 2 * \
|
||||
torch.matmul(z_flattened, self.embedding.weight.t())
|
||||
|
||||
## could possible replace this here
|
||||
# #\start...
|
||||
# find closest encodings
|
||||
min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1)
|
||||
|
||||
min_encodings = torch.zeros(
|
||||
min_encoding_indices.shape[0], self.n_e).to(z)
|
||||
min_encodings.scatter_(1, min_encoding_indices, 1)
|
||||
|
||||
# dtype min encodings: torch.float32
|
||||
# min_encodings shape: torch.Size([2048, 512])
|
||||
# min_encoding_indices.shape: torch.Size([2048, 1])
|
||||
|
||||
# get quantized latent vectors
|
||||
z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape)
|
||||
#.........\end
|
||||
|
||||
# with:
|
||||
# .........\start
|
||||
#min_encoding_indices = torch.argmin(d, dim=1)
|
||||
#z_q = self.embedding(min_encoding_indices)
|
||||
# ......\end......... (TODO)
|
||||
|
||||
# compute loss for embedding
|
||||
loss = torch.mean((z_q.detach()-z)**2) + self.beta * \
|
||||
torch.mean((z_q - z.detach()) ** 2)
|
||||
|
||||
# preserve gradients
|
||||
z_q = z + (z_q - z).detach()
|
||||
|
||||
# perplexity
|
||||
e_mean = torch.mean(min_encodings, dim=0)
|
||||
perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10)))
|
||||
|
||||
# reshape back to match original input shape
|
||||
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
||||
|
||||
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
|
||||
|
||||
def get_codebook_entry(self, indices, shape):
|
||||
# shape specifying (batch, height, width, channel)
|
||||
# TODO: check for more easy handling with nn.Embedding
|
||||
min_encodings = torch.zeros(indices.shape[0], self.n_e).to(indices)
|
||||
min_encodings.scatter_(1, indices[:,None], 1)
|
||||
|
||||
# get quantized latent vectors
|
||||
z_q = torch.matmul(min_encodings.float(), self.embedding.weight)
|
||||
|
||||
if shape is not None:
|
||||
z_q = z_q.view(shape)
|
||||
|
||||
# reshape back to match original input shape
|
||||
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
||||
|
||||
return z_q
|
||||
|
||||
|
||||
class GumbelQuantize(nn.Module):
|
||||
"""
|
||||
credit to @karpathy: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py (thanks!)
|
||||
Gumbel Softmax trick quantizer
|
||||
Categorical Reparameterization with Gumbel-Softmax, Jang et al. 2016
|
||||
https://arxiv.org/abs/1611.01144
|
||||
"""
|
||||
def __init__(self, num_hiddens, embedding_dim, n_embed, straight_through=True,
|
||||
kl_weight=5e-4, temp_init=1.0, use_vqinterface=True,
|
||||
remap=None, unknown_index="random"):
|
||||
super().__init__()
|
||||
|
||||
self.embedding_dim = embedding_dim
|
||||
self.n_embed = n_embed
|
||||
|
||||
self.straight_through = straight_through
|
||||
self.temperature = temp_init
|
||||
self.kl_weight = kl_weight
|
||||
|
||||
self.proj = nn.Conv2d(num_hiddens, n_embed, 1)
|
||||
self.embed = nn.Embedding(n_embed, embedding_dim)
|
||||
|
||||
self.use_vqinterface = use_vqinterface
|
||||
|
||||
self.remap = remap
|
||||
if self.remap is not None:
|
||||
self.register_buffer("used", torch.tensor(np.load(self.remap)))
|
||||
self.re_embed = self.used.shape[0]
|
||||
self.unknown_index = unknown_index # "random" or "extra" or integer
|
||||
if self.unknown_index == "extra":
|
||||
self.unknown_index = self.re_embed
|
||||
self.re_embed = self.re_embed+1
|
||||
print(f"Remapping {self.n_embed} indices to {self.re_embed} indices. "
|
||||
f"Using {self.unknown_index} for unknown indices.")
|
||||
else:
|
||||
self.re_embed = n_embed
|
||||
|
||||
def remap_to_used(self, inds):
|
||||
ishape = inds.shape
|
||||
assert len(ishape)>1
|
||||
inds = inds.reshape(ishape[0],-1)
|
||||
used = self.used.to(inds)
|
||||
match = (inds[:,:,None]==used[None,None,...]).long()
|
||||
new = match.argmax(-1)
|
||||
unknown = match.sum(2)<1
|
||||
if self.unknown_index == "random":
|
||||
new[unknown]=torch.randint(0,self.re_embed,size=new[unknown].shape).to(device=new.device)
|
||||
else:
|
||||
new[unknown] = self.unknown_index
|
||||
return new.reshape(ishape)
|
||||
|
||||
def unmap_to_all(self, inds):
|
||||
ishape = inds.shape
|
||||
assert len(ishape)>1
|
||||
inds = inds.reshape(ishape[0],-1)
|
||||
used = self.used.to(inds)
|
||||
if self.re_embed > self.used.shape[0]: # extra token
|
||||
inds[inds>=self.used.shape[0]] = 0 # simply set to zero
|
||||
back=torch.gather(used[None,:][inds.shape[0]*[0],:], 1, inds)
|
||||
return back.reshape(ishape)
|
||||
|
||||
def forward(self, z, temp=None, return_logits=False):
|
||||
# force hard = True when we are in eval mode, as we must quantize. actually, always true seems to work
|
||||
hard = self.straight_through if self.training else True
|
||||
temp = self.temperature if temp is None else temp
|
||||
|
||||
logits = self.proj(z)
|
||||
if self.remap is not None:
|
||||
# continue only with used logits
|
||||
full_zeros = torch.zeros_like(logits)
|
||||
logits = logits[:,self.used,...]
|
||||
|
||||
soft_one_hot = F.gumbel_softmax(logits, tau=temp, dim=1, hard=hard)
|
||||
if self.remap is not None:
|
||||
# go back to all entries but unused set to zero
|
||||
full_zeros[:,self.used,...] = soft_one_hot
|
||||
soft_one_hot = full_zeros
|
||||
z_q = einsum('b n h w, n d -> b d h w', soft_one_hot, self.embed.weight)
|
||||
|
||||
# + kl divergence to the prior loss
|
||||
qy = F.softmax(logits, dim=1)
|
||||
diff = self.kl_weight * torch.sum(qy * torch.log(qy * self.n_embed + 1e-10), dim=1).mean()
|
||||
|
||||
ind = soft_one_hot.argmax(dim=1)
|
||||
if self.remap is not None:
|
||||
ind = self.remap_to_used(ind)
|
||||
if self.use_vqinterface:
|
||||
if return_logits:
|
||||
return z_q, diff, (None, None, ind), logits
|
||||
return z_q, diff, (None, None, ind)
|
||||
return z_q, diff, ind
|
||||
|
||||
def get_codebook_entry(self, indices, shape):
|
||||
b, h, w, c = shape
|
||||
assert b*h*w == indices.shape[0]
|
||||
indices = rearrange(indices, '(b h w) -> b h w', b=b, h=h, w=w)
|
||||
if self.remap is not None:
|
||||
indices = self.unmap_to_all(indices)
|
||||
one_hot = F.one_hot(indices, num_classes=self.n_embed).permute(0, 3, 1, 2).float()
|
||||
z_q = einsum('b n h w, n d -> b d h w', one_hot, self.embed.weight)
|
||||
return z_q
|
||||
|
||||
|
||||
class VectorQuantizer2(nn.Module):
|
||||
"""
|
||||
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly
|
||||
avoids costly matrix multiplications and allows for post-hoc remapping of indices.
|
||||
"""
|
||||
# NOTE: due to a bug the beta term was applied to the wrong term. for
|
||||
# backwards compatibility we use the buggy version by default, but you can
|
||||
# specify legacy=False to fix it.
|
||||
def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random",
|
||||
sane_index_shape=False, legacy=True):
|
||||
super().__init__()
|
||||
self.n_e = n_e
|
||||
self.e_dim = e_dim
|
||||
self.beta = beta
|
||||
self.legacy = legacy
|
||||
|
||||
self.embedding = nn.Embedding(self.n_e, self.e_dim)
|
||||
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
|
||||
|
||||
self.remap = remap
|
||||
if self.remap is not None:
|
||||
self.register_buffer("used", torch.tensor(np.load(self.remap)))
|
||||
self.re_embed = self.used.shape[0]
|
||||
self.unknown_index = unknown_index # "random" or "extra" or integer
|
||||
if self.unknown_index == "extra":
|
||||
self.unknown_index = self.re_embed
|
||||
self.re_embed = self.re_embed+1
|
||||
print(f"Remapping {self.n_e} indices to {self.re_embed} indices. "
|
||||
f"Using {self.unknown_index} for unknown indices.")
|
||||
else:
|
||||
self.re_embed = n_e
|
||||
|
||||
self.sane_index_shape = sane_index_shape
|
||||
|
||||
def remap_to_used(self, inds):
|
||||
ishape = inds.shape
|
||||
assert len(ishape)>1
|
||||
inds = inds.reshape(ishape[0],-1)
|
||||
used = self.used.to(inds)
|
||||
match = (inds[:,:,None]==used[None,None,...]).long()
|
||||
new = match.argmax(-1)
|
||||
unknown = match.sum(2)<1
|
||||
if self.unknown_index == "random":
|
||||
new[unknown]=torch.randint(0,self.re_embed,size=new[unknown].shape).to(device=new.device)
|
||||
else:
|
||||
new[unknown] = self.unknown_index
|
||||
return new.reshape(ishape)
|
||||
|
||||
def unmap_to_all(self, inds):
|
||||
ishape = inds.shape
|
||||
assert len(ishape)>1
|
||||
inds = inds.reshape(ishape[0],-1)
|
||||
used = self.used.to(inds)
|
||||
if self.re_embed > self.used.shape[0]: # extra token
|
||||
inds[inds>=self.used.shape[0]] = 0 # simply set to zero
|
||||
back=torch.gather(used[None,:][inds.shape[0]*[0],:], 1, inds)
|
||||
return back.reshape(ishape)
|
||||
|
||||
def forward(self, z, temp=None, rescale_logits=False, return_logits=False):
|
||||
assert temp is None or temp==1.0, "Only for interface compatible with Gumbel"
|
||||
assert rescale_logits==False, "Only for interface compatible with Gumbel"
|
||||
assert return_logits==False, "Only for interface compatible with Gumbel"
|
||||
# reshape z -> (batch, height, width, channel) and flatten
|
||||
z = rearrange(z, 'b c h w -> b h w c').contiguous()
|
||||
z_flattened = z.view(-1, self.e_dim)
|
||||
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
||||
|
||||
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
|
||||
torch.sum(self.embedding.weight**2, dim=1) - 2 * \
|
||||
torch.einsum('bd,dn->bn', z_flattened, rearrange(self.embedding.weight, 'n d -> d n'))
|
||||
|
||||
min_encoding_indices = torch.argmin(d, dim=1)
|
||||
z_q = self.embedding(min_encoding_indices).view(z.shape)
|
||||
perplexity = None
|
||||
min_encodings = None
|
||||
|
||||
# compute loss for embedding
|
||||
if not self.legacy:
|
||||
loss = self.beta * torch.mean((z_q.detach()-z)**2) + \
|
||||
torch.mean((z_q - z.detach()) ** 2)
|
||||
else:
|
||||
loss = torch.mean((z_q.detach()-z)**2) + self.beta * \
|
||||
torch.mean((z_q - z.detach()) ** 2)
|
||||
|
||||
# preserve gradients
|
||||
z_q = z + (z_q - z).detach()
|
||||
|
||||
# reshape back to match original input shape
|
||||
z_q = rearrange(z_q, 'b h w c -> b c h w').contiguous()
|
||||
|
||||
if self.remap is not None:
|
||||
min_encoding_indices = min_encoding_indices.reshape(z.shape[0],-1) # add batch axis
|
||||
min_encoding_indices = self.remap_to_used(min_encoding_indices)
|
||||
min_encoding_indices = min_encoding_indices.reshape(-1,1) # flatten
|
||||
|
||||
if self.sane_index_shape:
|
||||
min_encoding_indices = min_encoding_indices.reshape(
|
||||
z_q.shape[0], z_q.shape[2], z_q.shape[3])
|
||||
|
||||
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
|
||||
|
||||
def get_codebook_entry(self, indices, shape):
|
||||
# shape specifying (batch, height, width, channel)
|
||||
if self.remap is not None:
|
||||
indices = indices.reshape(shape[0],-1) # add batch axis
|
||||
indices = self.unmap_to_all(indices)
|
||||
indices = indices.reshape(-1) # flatten again
|
||||
|
||||
# get quantized latent vectors
|
||||
z_q = self.embedding(indices)
|
||||
|
||||
if shape is not None:
|
||||
z_q = z_q.view(shape)
|
||||
# reshape back to match original input shape
|
||||
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
||||
|
||||
return z_q
|
||||
|
||||
class EmbeddingEMA(nn.Module):
|
||||
def __init__(self, num_tokens, codebook_dim, decay=0.99, eps=1e-5):
|
||||
super().__init__()
|
||||
self.decay = decay
|
||||
self.eps = eps
|
||||
weight = torch.randn(num_tokens, codebook_dim)
|
||||
self.weight = nn.Parameter(weight, requires_grad = False)
|
||||
self.cluster_size = nn.Parameter(torch.zeros(num_tokens), requires_grad = False)
|
||||
self.embed_avg = nn.Parameter(weight.clone(), requires_grad = False)
|
||||
self.update = True
|
||||
|
||||
def forward(self, embed_id):
|
||||
return F.embedding(embed_id, self.weight)
|
||||
|
||||
def cluster_size_ema_update(self, new_cluster_size):
|
||||
self.cluster_size.data.mul_(self.decay).add_(new_cluster_size, alpha=1 - self.decay)
|
||||
|
||||
def embed_avg_ema_update(self, new_embed_avg):
|
||||
self.embed_avg.data.mul_(self.decay).add_(new_embed_avg, alpha=1 - self.decay)
|
||||
|
||||
def weight_update(self, num_tokens):
|
||||
n = self.cluster_size.sum()
|
||||
smoothed_cluster_size = (
|
||||
(self.cluster_size + self.eps) / (n + num_tokens * self.eps) * n
|
||||
)
|
||||
#normalize embedding average with smoothed cluster size
|
||||
embed_normalized = self.embed_avg / smoothed_cluster_size.unsqueeze(1)
|
||||
self.weight.data.copy_(embed_normalized)
|
||||
|
||||
|
||||
class EMAVectorQuantizer(nn.Module):
|
||||
def __init__(self, n_embed, embedding_dim, beta, decay=0.99, eps=1e-5,
|
||||
remap=None, unknown_index="random"):
|
||||
super().__init__()
|
||||
self.codebook_dim = codebook_dim
|
||||
self.num_tokens = num_tokens
|
||||
self.beta = beta
|
||||
self.embedding = EmbeddingEMA(self.num_tokens, self.codebook_dim, decay, eps)
|
||||
|
||||
self.remap = remap
|
||||
if self.remap is not None:
|
||||
self.register_buffer("used", torch.tensor(np.load(self.remap)))
|
||||
self.re_embed = self.used.shape[0]
|
||||
self.unknown_index = unknown_index # "random" or "extra" or integer
|
||||
if self.unknown_index == "extra":
|
||||
self.unknown_index = self.re_embed
|
||||
self.re_embed = self.re_embed+1
|
||||
print(f"Remapping {self.n_embed} indices to {self.re_embed} indices. "
|
||||
f"Using {self.unknown_index} for unknown indices.")
|
||||
else:
|
||||
self.re_embed = n_embed
|
||||
|
||||
def remap_to_used(self, inds):
|
||||
ishape = inds.shape
|
||||
assert len(ishape)>1
|
||||
inds = inds.reshape(ishape[0],-1)
|
||||
used = self.used.to(inds)
|
||||
match = (inds[:,:,None]==used[None,None,...]).long()
|
||||
new = match.argmax(-1)
|
||||
unknown = match.sum(2)<1
|
||||
if self.unknown_index == "random":
|
||||
new[unknown]=torch.randint(0,self.re_embed,size=new[unknown].shape).to(device=new.device)
|
||||
else:
|
||||
new[unknown] = self.unknown_index
|
||||
return new.reshape(ishape)
|
||||
|
||||
def unmap_to_all(self, inds):
|
||||
ishape = inds.shape
|
||||
assert len(ishape)>1
|
||||
inds = inds.reshape(ishape[0],-1)
|
||||
used = self.used.to(inds)
|
||||
if self.re_embed > self.used.shape[0]: # extra token
|
||||
inds[inds>=self.used.shape[0]] = 0 # simply set to zero
|
||||
back=torch.gather(used[None,:][inds.shape[0]*[0],:], 1, inds)
|
||||
return back.reshape(ishape)
|
||||
|
||||
def forward(self, z):
|
||||
# reshape z -> (batch, height, width, channel) and flatten
|
||||
#z, 'b c h w -> b h w c'
|
||||
z = rearrange(z, 'b c h w -> b h w c')
|
||||
z_flattened = z.reshape(-1, self.codebook_dim)
|
||||
|
||||
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
||||
d = z_flattened.pow(2).sum(dim=1, keepdim=True) + \
|
||||
self.embedding.weight.pow(2).sum(dim=1) - 2 * \
|
||||
torch.einsum('bd,nd->bn', z_flattened, self.embedding.weight) # 'n d -> d n'
|
||||
|
||||
|
||||
encoding_indices = torch.argmin(d, dim=1)
|
||||
|
||||
z_q = self.embedding(encoding_indices).view(z.shape)
|
||||
encodings = F.one_hot(encoding_indices, self.num_tokens).type(z.dtype)
|
||||
avg_probs = torch.mean(encodings, dim=0)
|
||||
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))
|
||||
|
||||
if self.training and self.embedding.update:
|
||||
#EMA cluster size
|
||||
encodings_sum = encodings.sum(0)
|
||||
self.embedding.cluster_size_ema_update(encodings_sum)
|
||||
#EMA embedding average
|
||||
embed_sum = encodings.transpose(0,1) @ z_flattened
|
||||
self.embedding.embed_avg_ema_update(embed_sum)
|
||||
#normalize embed_avg and update weight
|
||||
self.embedding.weight_update(self.num_tokens)
|
||||
|
||||
# compute loss for embedding
|
||||
loss = self.beta * F.mse_loss(z_q.detach(), z)
|
||||
|
||||
# preserve gradients
|
||||
z_q = z + (z_q - z).detach()
|
||||
|
||||
# reshape back to match original input shape
|
||||
#z_q, 'b h w c -> b c h w'
|
||||
z_q = rearrange(z_q, 'b h w c -> b c h w')
|
||||
return z_q, loss, (perplexity, encodings, encoding_indices)
|
Reference in New Issue
Block a user