First commit OCR_earsing and Synthetics Handwritten Recognition awesome repo
This commit is contained in:
@@ -0,0 +1,2 @@
|
||||
from taming.modules.losses.vqperceptual import DummyLoss
|
||||
|
123
OCR_earsing/latent_diffusion/taming/modules/losses/lpips.py
Normal file
123
OCR_earsing/latent_diffusion/taming/modules/losses/lpips.py
Normal file
@@ -0,0 +1,123 @@
|
||||
"""Stripped version of https://github.com/richzhang/PerceptualSimilarity/tree/master/models"""
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torchvision import models
|
||||
from collections import namedtuple
|
||||
|
||||
from taming.util import get_ckpt_path
|
||||
|
||||
|
||||
class LPIPS(nn.Module):
|
||||
# Learned perceptual metric
|
||||
def __init__(self, use_dropout=True):
|
||||
super().__init__()
|
||||
self.scaling_layer = ScalingLayer()
|
||||
self.chns = [64, 128, 256, 512, 512] # vg16 features
|
||||
self.net = vgg16(pretrained=True, requires_grad=False)
|
||||
self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
|
||||
self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
|
||||
self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
|
||||
self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
|
||||
self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
|
||||
self.load_from_pretrained()
|
||||
for param in self.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
def load_from_pretrained(self, name="vgg_lpips"):
|
||||
ckpt = get_ckpt_path(name, "taming/modules/autoencoder/lpips")
|
||||
self.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False)
|
||||
print("loaded pretrained LPIPS loss from {}".format(ckpt))
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, name="vgg_lpips"):
|
||||
if name != "vgg_lpips":
|
||||
raise NotImplementedError
|
||||
model = cls()
|
||||
ckpt = get_ckpt_path(name)
|
||||
model.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False)
|
||||
return model
|
||||
|
||||
def forward(self, input, target):
|
||||
in0_input, in1_input = (self.scaling_layer(input), self.scaling_layer(target))
|
||||
outs0, outs1 = self.net(in0_input), self.net(in1_input)
|
||||
feats0, feats1, diffs = {}, {}, {}
|
||||
lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4]
|
||||
for kk in range(len(self.chns)):
|
||||
feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk])
|
||||
diffs[kk] = (feats0[kk] - feats1[kk]) ** 2
|
||||
|
||||
res = [spatial_average(lins[kk].model(diffs[kk]), keepdim=True) for kk in range(len(self.chns))]
|
||||
val = res[0]
|
||||
for l in range(1, len(self.chns)):
|
||||
val += res[l]
|
||||
return val
|
||||
|
||||
|
||||
class ScalingLayer(nn.Module):
|
||||
def __init__(self):
|
||||
super(ScalingLayer, self).__init__()
|
||||
self.register_buffer('shift', torch.Tensor([-.030, -.088, -.188])[None, :, None, None])
|
||||
self.register_buffer('scale', torch.Tensor([.458, .448, .450])[None, :, None, None])
|
||||
|
||||
def forward(self, inp):
|
||||
return (inp - self.shift) / self.scale
|
||||
|
||||
|
||||
class NetLinLayer(nn.Module):
|
||||
""" A single linear layer which does a 1x1 conv """
|
||||
def __init__(self, chn_in, chn_out=1, use_dropout=False):
|
||||
super(NetLinLayer, self).__init__()
|
||||
layers = [nn.Dropout(), ] if (use_dropout) else []
|
||||
layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), ]
|
||||
self.model = nn.Sequential(*layers)
|
||||
|
||||
|
||||
class vgg16(torch.nn.Module):
|
||||
def __init__(self, requires_grad=False, pretrained=True):
|
||||
super(vgg16, self).__init__()
|
||||
vgg_pretrained_features = models.vgg16(pretrained=pretrained).features
|
||||
self.slice1 = torch.nn.Sequential()
|
||||
self.slice2 = torch.nn.Sequential()
|
||||
self.slice3 = torch.nn.Sequential()
|
||||
self.slice4 = torch.nn.Sequential()
|
||||
self.slice5 = torch.nn.Sequential()
|
||||
self.N_slices = 5
|
||||
for x in range(4):
|
||||
self.slice1.add_module(str(x), vgg_pretrained_features[x])
|
||||
for x in range(4, 9):
|
||||
self.slice2.add_module(str(x), vgg_pretrained_features[x])
|
||||
for x in range(9, 16):
|
||||
self.slice3.add_module(str(x), vgg_pretrained_features[x])
|
||||
for x in range(16, 23):
|
||||
self.slice4.add_module(str(x), vgg_pretrained_features[x])
|
||||
for x in range(23, 30):
|
||||
self.slice5.add_module(str(x), vgg_pretrained_features[x])
|
||||
if not requires_grad:
|
||||
for param in self.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
def forward(self, X):
|
||||
h = self.slice1(X)
|
||||
h_relu1_2 = h
|
||||
h = self.slice2(h)
|
||||
h_relu2_2 = h
|
||||
h = self.slice3(h)
|
||||
h_relu3_3 = h
|
||||
h = self.slice4(h)
|
||||
h_relu4_3 = h
|
||||
h = self.slice5(h)
|
||||
h_relu5_3 = h
|
||||
vgg_outputs = namedtuple("VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3'])
|
||||
out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)
|
||||
return out
|
||||
|
||||
|
||||
def normalize_tensor(x,eps=1e-10):
|
||||
norm_factor = torch.sqrt(torch.sum(x**2,dim=1,keepdim=True))
|
||||
return x/(norm_factor+eps)
|
||||
|
||||
|
||||
def spatial_average(x, keepdim=True):
|
||||
return x.mean([2,3],keepdim=keepdim)
|
||||
|
@@ -0,0 +1,22 @@
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class BCELoss(nn.Module):
|
||||
def forward(self, prediction, target):
|
||||
loss = F.binary_cross_entropy_with_logits(prediction,target)
|
||||
return loss, {}
|
||||
|
||||
|
||||
class BCELossWithQuant(nn.Module):
|
||||
def __init__(self, codebook_weight=1.):
|
||||
super().__init__()
|
||||
self.codebook_weight = codebook_weight
|
||||
|
||||
def forward(self, qloss, target, prediction, split):
|
||||
bce_loss = F.binary_cross_entropy_with_logits(prediction,target)
|
||||
loss = bce_loss + self.codebook_weight*qloss
|
||||
return loss, {"{}/total_loss".format(split): loss.clone().detach().mean(),
|
||||
"{}/bce_loss".format(split): bce_loss.detach().mean(),
|
||||
"{}/quant_loss".format(split): qloss.detach().mean()
|
||||
}
|
@@ -0,0 +1,136 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from taming.modules.losses.lpips import LPIPS
|
||||
from taming.modules.discriminator.model import NLayerDiscriminator, weights_init
|
||||
|
||||
|
||||
class DummyLoss(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
|
||||
def adopt_weight(weight, global_step, threshold=0, value=0.):
|
||||
if global_step < threshold:
|
||||
weight = value
|
||||
return weight
|
||||
|
||||
|
||||
def hinge_d_loss(logits_real, logits_fake):
|
||||
loss_real = torch.mean(F.relu(1. - logits_real))
|
||||
loss_fake = torch.mean(F.relu(1. + logits_fake))
|
||||
d_loss = 0.5 * (loss_real + loss_fake)
|
||||
return d_loss
|
||||
|
||||
|
||||
def vanilla_d_loss(logits_real, logits_fake):
|
||||
d_loss = 0.5 * (
|
||||
torch.mean(torch.nn.functional.softplus(-logits_real)) +
|
||||
torch.mean(torch.nn.functional.softplus(logits_fake)))
|
||||
return d_loss
|
||||
|
||||
|
||||
class VQLPIPSWithDiscriminator(nn.Module):
|
||||
def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0,
|
||||
disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
|
||||
perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
|
||||
disc_ndf=64, disc_loss="hinge"):
|
||||
super().__init__()
|
||||
assert disc_loss in ["hinge", "vanilla"]
|
||||
self.codebook_weight = codebook_weight
|
||||
self.pixel_weight = pixelloss_weight
|
||||
self.perceptual_loss = LPIPS().eval()
|
||||
self.perceptual_weight = perceptual_weight
|
||||
|
||||
self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
|
||||
n_layers=disc_num_layers,
|
||||
use_actnorm=use_actnorm,
|
||||
ndf=disc_ndf
|
||||
).apply(weights_init)
|
||||
self.discriminator_iter_start = disc_start
|
||||
if disc_loss == "hinge":
|
||||
self.disc_loss = hinge_d_loss
|
||||
elif disc_loss == "vanilla":
|
||||
self.disc_loss = vanilla_d_loss
|
||||
else:
|
||||
raise ValueError(f"Unknown GAN loss '{disc_loss}'.")
|
||||
print(f"VQLPIPSWithDiscriminator running with {disc_loss} loss.")
|
||||
self.disc_factor = disc_factor
|
||||
self.discriminator_weight = disc_weight
|
||||
self.disc_conditional = disc_conditional
|
||||
|
||||
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
|
||||
if last_layer is not None:
|
||||
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
|
||||
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
|
||||
else:
|
||||
nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
|
||||
g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
|
||||
|
||||
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
|
||||
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
|
||||
d_weight = d_weight * self.discriminator_weight
|
||||
return d_weight
|
||||
|
||||
def forward(self, codebook_loss, inputs, reconstructions, optimizer_idx,
|
||||
global_step, last_layer=None, cond=None, split="train"):
|
||||
rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
|
||||
if self.perceptual_weight > 0:
|
||||
p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
|
||||
rec_loss = rec_loss + self.perceptual_weight * p_loss
|
||||
else:
|
||||
p_loss = torch.tensor([0.0])
|
||||
|
||||
nll_loss = rec_loss
|
||||
#nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
|
||||
nll_loss = torch.mean(nll_loss)
|
||||
|
||||
# now the GAN part
|
||||
if optimizer_idx == 0:
|
||||
# generator update
|
||||
if cond is None:
|
||||
assert not self.disc_conditional
|
||||
logits_fake = self.discriminator(reconstructions.contiguous())
|
||||
else:
|
||||
assert self.disc_conditional
|
||||
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
|
||||
g_loss = -torch.mean(logits_fake)
|
||||
|
||||
try:
|
||||
d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
|
||||
except RuntimeError:
|
||||
assert not self.training
|
||||
d_weight = torch.tensor(0.0)
|
||||
|
||||
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
||||
loss = nll_loss + d_weight * disc_factor * g_loss + self.codebook_weight * codebook_loss.mean()
|
||||
|
||||
log = {"{}/total_loss".format(split): loss.clone().detach().mean(),
|
||||
"{}/quant_loss".format(split): codebook_loss.detach().mean(),
|
||||
"{}/nll_loss".format(split): nll_loss.detach().mean(),
|
||||
"{}/rec_loss".format(split): rec_loss.detach().mean(),
|
||||
"{}/p_loss".format(split): p_loss.detach().mean(),
|
||||
"{}/d_weight".format(split): d_weight.detach(),
|
||||
"{}/disc_factor".format(split): torch.tensor(disc_factor),
|
||||
"{}/g_loss".format(split): g_loss.detach().mean(),
|
||||
}
|
||||
return loss, log
|
||||
|
||||
if optimizer_idx == 1:
|
||||
# second pass for discriminator update
|
||||
if cond is None:
|
||||
logits_real = self.discriminator(inputs.contiguous().detach())
|
||||
logits_fake = self.discriminator(reconstructions.contiguous().detach())
|
||||
else:
|
||||
logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
|
||||
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
|
||||
|
||||
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
||||
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
|
||||
|
||||
log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
|
||||
"{}/logits_real".format(split): logits_real.detach().mean(),
|
||||
"{}/logits_fake".format(split): logits_fake.detach().mean()
|
||||
}
|
||||
return d_loss, log
|
Reference in New Issue
Block a user